The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-...The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results.展开更多
An accurate finite element ( FE ) model of the human middle ear can provide better understanding of the mechanics of middle ear, and can be used for aiding the design of the implantable middle ear hearing devices. I...An accurate finite element ( FE ) model of the human middle ear can provide better understanding of the mechanics of middle ear, and can be used for aiding the design of the implantable middle ear hearing devices. In this paper, a threedimensional (3D) FE model of the human middle ear was constructed, including the tympanic membrane, ossicular bones, and middle ear suspensory ligaments/museles. This model was constructed based on a complete set of computerized tomography section images of a healthy volunteer's left ear by reverse engineering technology. The validity of this model was confirmed by comparing the motions of the tympanic membrane and stapes footplate obtained by this model with published experimental measurements on human temporal bones. The result shows that the model is reasonable in predicting the biomechanics of the human middle ear.展开更多
基金Project (2012BAE06B01) supported by the Key Technology R&D Program During the 12th Five-Year Plan Period, ChinaProjects(21201030, 51272039, 51032007) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, China
文摘The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results.
基金National Natural Science Foundation of China ( No. 10772121)Med-Science Cross Research Foundation of Shanghai Jiaotong University, China(No.YG2007MS14)
文摘An accurate finite element ( FE ) model of the human middle ear can provide better understanding of the mechanics of middle ear, and can be used for aiding the design of the implantable middle ear hearing devices. In this paper, a threedimensional (3D) FE model of the human middle ear was constructed, including the tympanic membrane, ossicular bones, and middle ear suspensory ligaments/museles. This model was constructed based on a complete set of computerized tomography section images of a healthy volunteer's left ear by reverse engineering technology. The validity of this model was confirmed by comparing the motions of the tympanic membrane and stapes footplate obtained by this model with published experimental measurements on human temporal bones. The result shows that the model is reasonable in predicting the biomechanics of the human middle ear.