非规则颗粒形态显著影响球磨机中颗粒材料的运动行为,同时对球磨机结构产生不同的力学响应。采用超二次曲面方程描述非规则颗粒材料,并发展了离散元(discrete element method,DEM)–有限元(finite element method,FEM)耦合算法以分析非...非规则颗粒形态显著影响球磨机中颗粒材料的运动行为,同时对球磨机结构产生不同的力学响应。采用超二次曲面方程描述非规则颗粒材料,并发展了离散元(discrete element method,DEM)–有限元(finite element method,FEM)耦合算法以分析非规则颗粒材料与滚筒球磨机间的相互作用。在该算法中,滚筒球磨机被划分为一系列四边形单元,并且超二次曲面颗粒与球磨机间的接触判断可转化为超二次曲面颗粒与四边形单元间的接触判断。将计算得到的碰撞力向节点插值,该节点力作为载荷条件在有限元中进行隐式动力学求解,并通过求解颗粒运动方程和有限元动力方程实现颗粒运动更新和结构力学响应分析。进一步分析了滚筒球磨机中球体、圆柱体和立方体颗粒材料的运动行为以及滚筒球磨机的变形及应力分布规律。研究结果表明:颗粒形状显著影响球磨机研磨效果和球磨机结构位移;立方体颗粒具有最好的研磨效果,而圆柱体颗粒比球体颗粒具有更好的研磨效果;在结构位移上,立方体颗粒有最大的峰值位移,其次是圆柱体和球体颗粒;相比于规则的球体颗粒,超二次曲面颗粒有不规则的表面形状,这会导致更好的研磨效果和更大的结构位移。展开更多
压水型反应堆(pressurized water reactor,PWR)系统主管道热段内冷却剂的温度和流量,直接反映了核功率和堆芯换热状态,是反应堆功率控制和安全保护的核心参数。为全面掌握华龙一号反应堆上腔室及热段内冷却剂流-热耦合场分布及演变规律...压水型反应堆(pressurized water reactor,PWR)系统主管道热段内冷却剂的温度和流量,直接反映了核功率和堆芯换热状态,是反应堆功率控制和安全保护的核心参数。为全面掌握华龙一号反应堆上腔室及热段内冷却剂流-热耦合场分布及演变规律,为核心参数测控提供参考,基于有限元分析(finite element method,FEA)方法,对上腔室及热段冷却剂流域进行了计算流体力学(computational fluid dynamics,CFD)数值模拟。首先建立了合理简化后的华龙一号(Hualong One)反应堆上腔室及相连热段的3D几何结构模型。随后对模型计算域进行了离散化网格划分和网格敏感性分析。最后通过计算,获得了冷却剂非等温流动的稳态特性解,流量、温度与相关设计估算值、实际测量值的相对误差均小于2%。对稳态特性研究表明,高、低温冷却剂在上腔室垂直内壁附近的不充分换热导致热段入口冷却剂温度分布不均,存在14.0~16.3℃的温差。随冷却剂沿轴向流动,冷却剂温度场分布和流场分布均逐渐趋于均匀和稳定,且是热段内低温冷却剂的流动主导了冷却剂温度分布的变化。展开更多
文摘非规则颗粒形态显著影响球磨机中颗粒材料的运动行为,同时对球磨机结构产生不同的力学响应。采用超二次曲面方程描述非规则颗粒材料,并发展了离散元(discrete element method,DEM)–有限元(finite element method,FEM)耦合算法以分析非规则颗粒材料与滚筒球磨机间的相互作用。在该算法中,滚筒球磨机被划分为一系列四边形单元,并且超二次曲面颗粒与球磨机间的接触判断可转化为超二次曲面颗粒与四边形单元间的接触判断。将计算得到的碰撞力向节点插值,该节点力作为载荷条件在有限元中进行隐式动力学求解,并通过求解颗粒运动方程和有限元动力方程实现颗粒运动更新和结构力学响应分析。进一步分析了滚筒球磨机中球体、圆柱体和立方体颗粒材料的运动行为以及滚筒球磨机的变形及应力分布规律。研究结果表明:颗粒形状显著影响球磨机研磨效果和球磨机结构位移;立方体颗粒具有最好的研磨效果,而圆柱体颗粒比球体颗粒具有更好的研磨效果;在结构位移上,立方体颗粒有最大的峰值位移,其次是圆柱体和球体颗粒;相比于规则的球体颗粒,超二次曲面颗粒有不规则的表面形状,这会导致更好的研磨效果和更大的结构位移。
文摘压水型反应堆(pressurized water reactor,PWR)系统主管道热段内冷却剂的温度和流量,直接反映了核功率和堆芯换热状态,是反应堆功率控制和安全保护的核心参数。为全面掌握华龙一号反应堆上腔室及热段内冷却剂流-热耦合场分布及演变规律,为核心参数测控提供参考,基于有限元分析(finite element method,FEA)方法,对上腔室及热段冷却剂流域进行了计算流体力学(computational fluid dynamics,CFD)数值模拟。首先建立了合理简化后的华龙一号(Hualong One)反应堆上腔室及相连热段的3D几何结构模型。随后对模型计算域进行了离散化网格划分和网格敏感性分析。最后通过计算,获得了冷却剂非等温流动的稳态特性解,流量、温度与相关设计估算值、实际测量值的相对误差均小于2%。对稳态特性研究表明,高、低温冷却剂在上腔室垂直内壁附近的不充分换热导致热段入口冷却剂温度分布不均,存在14.0~16.3℃的温差。随冷却剂沿轴向流动,冷却剂温度场分布和流场分布均逐渐趋于均匀和稳定,且是热段内低温冷却剂的流动主导了冷却剂温度分布的变化。