期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
有限元-康托洛维奇杂交法及其应用 被引量:1
1
作者 仇平 陈波 刘高联 《力学季刊》 CSCD 北大核心 2008年第4期565-572,共8页
本文将有限元法与康托洛维奇方法进行适当组合,吸收二者的主要优点,提出在单元的位移插值函数中附加康托洛维奇项。康托洛维奇方法是一种半解析法,其在解析方向具有较高的精度,在一定程度上弥补了原有限元方法中插值函数选取的盲目性,... 本文将有限元法与康托洛维奇方法进行适当组合,吸收二者的主要优点,提出在单元的位移插值函数中附加康托洛维奇项。康托洛维奇方法是一种半解析法,其在解析方向具有较高的精度,在一定程度上弥补了原有限元方法中插值函数选取的盲目性,能够较好地反映微分方程的固有性质,提高其适应性。在单元的位移插值函数中附加内部无节点的位移项,无需增加新的单元与节点,使用较少的单元即可获得较高的精度。并且,这些附加项满足单元边界条件为零,故其在单元与单元的交界面上是保证协调的。本文通过算例充分说明了此方法的特点和优越性。 展开更多
关键词 有限元—康托洛维奇杂交法 变分 待定函数
下载PDF
康托洛维奇-里茨杂交法及其应用 被引量:3
2
作者 刘高联 宋雪玉 李范春 《力学季刊》 CSCD 北大核心 2007年第3期382-389,共8页
本文将Kantorovich法与Ritz法进行适当组合,吸收了二者的主要优点,提出了康托洛维奇法的一种改进方法。以二维问题为例,Kantorovich法在一个方向(例如y方向)的分布完全预先选定,这含有很大的主观任意性,因而限制了近似解的精度,改进法则... 本文将Kantorovich法与Ritz法进行适当组合,吸收了二者的主要优点,提出了康托洛维奇法的一种改进方法。以二维问题为例,Kantorovich法在一个方向(例如y方向)的分布完全预先选定,这含有很大的主观任意性,因而限制了近似解的精度,改进法则在y方向仿Ritz法改进为一个含有若干个自由参数的分布函数,由于增加了近似解的自由度,故可改善解的精度。对Kantorovich法的另一改进是在计算高阶近似解时,通过逐项求解待定函数避免了求解更高阶微分方程或含更多方程的方程组,减少了计算量,降低了计算难度。用改进法求解了固体力学里的矩形截面柱体扭转问题和四边固支矩形板的弯曲问题,通过算例充分说明了此方法的特点和优越性。 展开更多
关键词 康托洛维奇-里茨杂交 待定函数 自由参数 变分方
下载PDF
固体含源导热问题的Hamilton原理及其解析方法
3
作者 张文福 《东北石油大学学报》 CAS 北大核心 2015年第3期118-124,8,共7页
变分原理的推导一般采用试凑法或Lagrange乘子法.基于固体瞬态热传导的微分方程,利用奥奇西克分部积分法建立固体含源导热问题的Hamilton原理.该原理可以用于构建新的有限元数值算法,也可以用于获得一些复杂边界问题的新解析解.分析Hami... 变分原理的推导一般采用试凑法或Lagrange乘子法.基于固体瞬态热传导的微分方程,利用奥奇西克分部积分法建立固体含源导热问题的Hamilton原理.该原理可以用于构建新的有限元数值算法,也可以用于获得一些复杂边界问题的新解析解.分析Hamilton原理在热传导问题解析解方面的应用,利用康托洛维奇—里茨杂交法给出2个算例的近似解析解和精确解析解,从而证明建立的Hamilton原理及其解析解法的正确性和有效性.讨论基于热质理论的Hamilton原理存在的问题. 展开更多
关键词 HAMILTON原理 解析解 变分 康托洛维奇—里茨杂交
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部