In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object a...In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.展开更多
Top structure and basement will confront the risk of being damaged on account of large stress and strain fields incurred by differential uplift and settlement between inner column and diaphragm wall in top-down method...Top structure and basement will confront the risk of being damaged on account of large stress and strain fields incurred by differential uplift and settlement between inner column and diaphragm wall in top-down method. Top-down excavation of the Metro Line 10 in Shanghai was modeled with finite element analysis software ABAQUS and parameters of subsoil were obtained by inverse analysis. Based on the finite element model and parameters, changes in the following factors were made to find more effective methods to restrain differential uplift and settlement: length of diaphragm wall, thickness of jet-grouting reinforcement layer, ways of subsoil reinforcement, sequence of pit excavation, connection between slabs and diaphragm wall or column and width of pit. Several significant results are acquired. The longer the diaphragm wall is, the greater the differential uplift between column and diaphragm wall is. Rigidity of roof slab is in general not strong enough to keep diaphragm wall and column undergoing the same uplift during excavation; Uplift at head of column and differential uplift between column and diaphragm wall decrease when subsoil from-16.6 to-43 m in pit is reinforced through jet-grouting. But, as excavation proceeds to a lower level, benefit from soil reinforcement diminishes. During the process applying vertical load, the larger the depth of diaphragm wall is, the smaller the settlement is at head of column and diaphragm wall, and the greater the differential settlement is between column and diaphragm wall. When friction connection is implemented between column, diaphragm wall and floor slabs, uplifts at head of column and diaphragm wall are larger than those of the case when tie connection is implemented, and so does differential uplift between column and diaphragm wall. The maximum deflection of diaphragm wall decreases by 58% on account of soil reinforcement in pit. The maximum deflection of diaphragm wall decreases by 61.2% when friction connection is implemented instead of tie connection.展开更多
This paper concerns the impact of an operating metro train on the structure of a shield tunnel lining and its soft foundation. An elastoplastic 3D dynamic finite difference model was established by using the FLAC3D nu...This paper concerns the impact of an operating metro train on the structure of a shield tunnel lining and its soft foundation. An elastoplastic 3D dynamic finite difference model was established by using the FLAC3D numerical soft- ware. By fully considering the joints, the A-B-K segments and the soft stratum, the dynamic response of the shield tunnel buried in thick, soft soil under the vibrating load induced by a metro train was numerically simulated. The simulation result, for which the joint was considered, was compared with the result when the joint was not considered. The results show that an operating metro train induces a significant dynamic response in the structure of the lining of the shield tunnel and its soft foundation. The severe dynamic response zones of the lining structure are largely distributed in the range of the lower half of the segment-ring and the nearer to the bottom of the segment-ring, the more severe the response. Of two horizontally symmetric, corresponding places on the segment lining, the one near the joint is more severe in its dynamic response than that of the one far from the joint; the nearer the zone of the foundation soil to the lower half of the seg- ment-ring, the more severe the dynamic response. The maximum shear strain of the foundation soil takes place near the joint between two normal segments at the bottom. The dynamic response influenced by joints is more severe than the response not influenced by joints, showing that the non-joint assumption is somewhat impractical.展开更多
Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load...Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load and the other end is connected to a flexible riser, carrying the dynamic load of the flexible riser, so its function is a transition connection between the flexible riser and the rigid pipeline which fixes the flexible riser on the seabed. On the other hand. as a typical subsea product, the design will satisfythe requirements of the standards for subsea products. By studying the stress analysisphilosophy of the topside piping and subsea pipeline, a physical model and procedure for piping stress analysis of the SDRB have been established.The conditions of the adverse design load have been considered, and a combination of the static load from the rigid pipeline and the dynamic load flexibility has also been optimized. And a comparative analysis between the AMSE, DNV and API standards for piping stress with the checking rules has been done.Because theSDRB belongs to the subsea pipeline terminal product, the use of DNV standards to check its process piping stress is recommended. Finally, the process piping stress of the SDRB has been calculated, and the results show that the jacket pipe and the carrier pipe stress of the SDRB process piping satisfy the DNV standards as a whole.The bulkhead cannot be accurately simulated by the AutoPIPE software which uses the FEA software ANSYS inthe detailed analysis, but the checking results will still meet the requirements of the DNV standards.展开更多
Due to the variation of the blade cross-section, the deformation stress and strain of the workpiece keep changing during the rolling process and the conventional rolling theory is no longer valid. The complexity and d...Due to the variation of the blade cross-section, the deformation stress and strain of the workpiece keep changing during the rolling process and the conventional rolling theory is no longer valid. The complexity and diversity of the blade cross-section determine it impossible to establish an universal theoretical model for the rolling process. Finite element analysis(FEA) provides a perspective solution to the prediction. The FEA software DEFORM was applied to discovering the deformation, stress, strain and velocity field of the variable cross-section workpiece, and the effects of friction coefficient and rolling speed during the rolling process. which indicates that the average rolling force at friction coefficient of 0.4 is 6.5% higher than that at 0.12, and the rolling velocity has less effect on the equivalent stress and strain distribution, which would confer instructive significance on the theoretical study as well as the engineering practice.展开更多
By the generalized Kelvin creep model,rheological characteristics of deep softrock and long-term mechanical behaviors of support structures were simulated.Mechanicaldeformation characteristics of support structures un...By the generalized Kelvin creep model,rheological characteristics of deep softrock and long-term mechanical behaviors of support structures were simulated.Mechanicaldeformation characteristics of support structures under different lining circumstanceswere also analyzed on the basis of deducing the relationship between the generalizedKelvin creep model and implicit creep equations in ANSYS FEM software.The resultsshow that high stress of deep tunnels is the main factor in creep damage;the surroundingrock's deformation binding effect due to lining increases as the thickness increases but theeffect becomes very weak when it increases to a certain value;contact pressure on thelining decreases as its thickness decreases.展开更多
A stress relaxation test has been carried out for Hastelloy C-276 at temperature of 800 ~C and initial stress level of 250 MPa. Based on the experimental stress relaxation curve, the relationship between creep strain ...A stress relaxation test has been carried out for Hastelloy C-276 at temperature of 800 ~C and initial stress level of 250 MPa. Based on the experimental stress relaxation curve, the relationship between creep strain rate and stress has been derived. Then, a set of creep constitutive equations has been built and the values of constants arising in the constitutive equations have been determined by fitting the creep strain rate-stress curve. Close agreement between computed results and experimental ones is obtained for stress relaxation data. The creep constitutive equation set has been integrated with the commercial FE (finite element) solver MSC.Marc via the user defined subroutine, CRPLAW, for the vacuum hot bulge forming process modelling of Hastelloy C-276 thin-walled cylindrical workpiece. The temperature field, the radius-direction displacement field and the stress-strain field are calculated and analyzed. Furthermore, the bulging dimension and the final internal diameter of workpiece are predicted and the test results verify the reliability of the finite element method.展开更多
Brazing has a wide acceptance in industries and its simplicity in variety of application attracts more and more patronage. The strength of brazing joint determines the reliability of brazed engineering components. So ...Brazing has a wide acceptance in industries and its simplicity in variety of application attracts more and more patronage. The strength of brazing joint determines the reliability of brazed engineering components. So the need to ascertain the reliability or to predict its failure (without some destructive testing) becomes high even with a computer aided analysis using the Finite Element Analysis. Here, we have employed the services of FEA software, Abaqus CAE, as a tool for the computer calculation to investigate a joint case of cemented carbide brazed with silver-based filler metal. In this paper, 2D analysis has been adopted because the thickness of the material (in 2D) does not influence the final calculation results. We have applied constant loading and constant boundary condition to explore data from the elastic and plastic strain analysis through which we were able to predict the maximum joint strength with respect to the joint thickness. The pattern of the meshing was also significant. And the result could be transferable to a real-life field situation. The final results showed that there is an optimum thickness of the filler metal with the maximum strength which matches that obtained from experiment.展开更多
Combining the optimization and FEM technology,crashworthiness of aluminum extrusions was studied for an automobile safety plan.The effects of longitudinal stiffeners on the crushing of stiffened square columns were st...Combining the optimization and FEM technology,crashworthiness of aluminum extrusions was studied for an automobile safety plan.The effects of longitudinal stiffeners on the crushing of stiffened square columns were studied considering the damage evolution.The numerical analysis was carried out by ABAQUS software.Subsequently,the collapse behavior of aluminum extrusion damage was validated by comparing against solution published in literature.Finally,in order to find more efficient and lighter crush absorber and achieving minimum peak crushing force,response surface methodology(RSM) has been applied for optimizing the aluminum extrusion tube.展开更多
For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the war...For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the warpage be- cause of their special shape. A new solution was suggested in this work. The strip-like plastic part was regarded as a little-curved beam macrnscopically, and was divided into a few one-dimensional elements. On the section of each elemental node location, two-dimensional thermal finite element analysis was made to obtain the non- uniform thermal stress caused by the time difference of the solidification of the plastic melt in the mold. The stress relaxation, or equivalently, strain creep was dealt with by using a special computing model. On the bases of in-mold elastic stress, the final bending moment to the beam was obtained and the warpage was predict- ed in good a^reement with practical cases.展开更多
In order to describe and control the stress distribution and total deformation of bladed disk assemblies used in the aeroengine, a highly efficient and precise method of probabilistic analysis which is called extremum...In order to describe and control the stress distribution and total deformation of bladed disk assemblies used in the aeroengine, a highly efficient and precise method of probabilistic analysis which is called extremum response surface method(ERSM) is produced based on the previous deterministic analysis results with the finite element model(FEM). In this work, many key nonlinear factors, such as the dynamic feature of the temperature load, the centrifugal force and the boundary conditions, are taken into consideration for the model. The changing patterns with time of bladed disk assemblies about stress distribution and total deformation are obtained during the deterministic analysis, and at the same time, the largest deformation and stress nodes of bladed disk assemblies are found and taken as input target of probabilistic analysis in a scientific and reasonable way. Not only their reliability, historical sample, extreme response surface(ERS) and the cumulative probability distribution function but also their sensitivity and effect probability are obtained. Main factors affecting stress distribution and total deformation of bladed disk assemblies are investigated through the sensitivity analysis of the model. Finally, compared with the response surface method(RSM) and the Monte Carlo simulation(MCS), the results show that this new approach is effective.展开更多
Traditional variation analysis methods are not applicable to non-rigid assemblies due to possible part deformation during the assembly process. This paper presents the use of finite element methods to simulate assembl...Traditional variation analysis methods are not applicable to non-rigid assemblies due to possible part deformation during the assembly process. This paper presents the use of finite element methods to simulate assembly deformation. The relationship between the parts’ variation and the variation of the key points in final assembly for quality control is set up by calculating the spring back deformation after assembly. Moreover, the optimization method for non-rigid assembly variations based on finite element analysis is presented. The optimal objective is to reduce the manufacturing cost. The approach is implemented by using ANSYS and MATLAB. The test example shows that the proposed method is effective and applicable.展开更多
Many problems with underlying variational structure involve a coupling of volume with surface effects.A straight-forward approach in a finite element discretiza- tion is to make use of the surface triangulation that i...Many problems with underlying variational structure involve a coupling of volume with surface effects.A straight-forward approach in a finite element discretiza- tion is to make use of the surface triangulation that is naturally induced by the volume triangulation.In an adaptive method one wants to facilitate'matching'local mesh modifications,i.e.,local refinement and/or coarsening,of volume and surface mesh with standard tools such that the surface grid is always induced by the volume grid. We describe the concepts behind this approach for bisectional refinement and describe new tools incorporated in the finite element toolbox ALBERTA.We also present several important applications of the mesh coupling.展开更多
A novel magnetic-controlled switcher type fault current limiter (FCL) based on the topology of the saturated iron core high temperature superconducting FCL is proposed. The magnetic field distribution of the FCL iron ...A novel magnetic-controlled switcher type fault current limiter (FCL) based on the topology of the saturated iron core high temperature superconducting FCL is proposed. The magnetic field distribution of the FCL iron core is analyzed by FEA software ANSYS. The current limiting characteristic is investigated by both 3-D field-circuit coupled simulation and Matlab. The experiments on the 220 V/50 A test model show that the FCL can limit the fault current swiftly and effectively,and the FCL has the advantages of simple and reliable structure, flexible control strategy. The simulation and experimental results prove that the theoretical expectation and current limiting performance is satisfactory for practical use.展开更多
Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mas...Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring.展开更多
Playing a critical role in transmitting movement and power, the meshing performance of spiral bevel gears has a significant effect on products' operational performance. To evaluate the meshing performance, the acc...Playing a critical role in transmitting movement and power, the meshing performance of spiral bevel gears has a significant effect on products' operational performance. To evaluate the meshing performance, the accurate three-dimensional(3D) spiral bevel gear models are established through the Pro/E and MATLAB softwares, and the finite element analysis(FEA) methods are applied to the theoretical investigation of the influence of cutter diameter on meshing performance in spiral bevel gears. The results obtained show that the cutter diameter has a significant influence on spiral bevel gears' meshing performance, such as the contact area, contact pressure, bending stress, torsional stiffness and transmission error.展开更多
This paper deeply analyses the influence of different local tectonic on stress performance of spatial curved steel box Girder Bridge, using the finite element analysis software to establish space finite element model ...This paper deeply analyses the influence of different local tectonic on stress performance of spatial curved steel box Girder Bridge, using the finite element analysis software to establish space finite element model of this bridge, calculation and analysis were made on the bridge of the strength, stiffness. It has certain reference value for guiding engineering design, have a good foundation for the mechanical properties and stability of linear and nonlinear further study of curved steel box girder.展开更多
With the increasing development of Brazil in recent years, major engineering construction works have been designed and built, partieutarly those involving large volumes of mass concrete, such as in the case of dams. M...With the increasing development of Brazil in recent years, major engineering construction works have been designed and built, partieutarly those involving large volumes of mass concrete, such as in the case of dams. Mass concrete, due to its large size and volume, presents a considerable temperature rise caused by cement grain hydration. This temperature rise can be sufficient to cause concrete crack and/or cracking, which may lead to serious problems. In this paper, we sought to study heat generation and temperature field in mass concrete through ANSYS software, which uses finite element method to analyze the problem. This program allows temperatures to be checked for different concrete ages. With that, it is possible to evaluate the temperatures obtained and the factors influencing the results in a short period of time at a low cost. With the help of the software, it is possible to check the temperatures for different concrete properties by analyzing them on different concreting days. Therefore, it was possible to establish that the properties of the concrete directly influence the temperature evolution phenomenon.展开更多
V-shape hulls are widely used in peacekeeping efforts such as demining vehicles in order to deflect the blast energy and reduce the effects of mine blast. Blast resistant design and energy absorption enhancement of V-...V-shape hulls are widely used in peacekeeping efforts such as demining vehicles in order to deflect the blast energy and reduce the effects of mine blast. Blast resistant design and energy absorption enhancement of V-shape plates were carried out using finite element analysis package ABAQUS. Various geometries of V-shape plates with and without interlayer of materials like Al-foams and honeycomb were employed to analyze their effects on the deformation of the plate and applied stresses and strains. The results obtained show that application of metallic foams leads to better response of the plate and consequently results in more energy dissipation, less dame to vehicle and enhances crew survivability.展开更多
文摘In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.
基金Projects(51208071,51108312) supported by the National Natural Science Foundation of China
文摘Top structure and basement will confront the risk of being damaged on account of large stress and strain fields incurred by differential uplift and settlement between inner column and diaphragm wall in top-down method. Top-down excavation of the Metro Line 10 in Shanghai was modeled with finite element analysis software ABAQUS and parameters of subsoil were obtained by inverse analysis. Based on the finite element model and parameters, changes in the following factors were made to find more effective methods to restrain differential uplift and settlement: length of diaphragm wall, thickness of jet-grouting reinforcement layer, ways of subsoil reinforcement, sequence of pit excavation, connection between slabs and diaphragm wall or column and width of pit. Several significant results are acquired. The longer the diaphragm wall is, the greater the differential uplift between column and diaphragm wall is. Rigidity of roof slab is in general not strong enough to keep diaphragm wall and column undergoing the same uplift during excavation; Uplift at head of column and differential uplift between column and diaphragm wall decrease when subsoil from-16.6 to-43 m in pit is reinforced through jet-grouting. But, as excavation proceeds to a lower level, benefit from soil reinforcement diminishes. During the process applying vertical load, the larger the depth of diaphragm wall is, the smaller the settlement is at head of column and diaphragm wall, and the greater the differential settlement is between column and diaphragm wall. When friction connection is implemented between column, diaphragm wall and floor slabs, uplifts at head of column and diaphragm wall are larger than those of the case when tie connection is implemented, and so does differential uplift between column and diaphragm wall. The maximum deflection of diaphragm wall decreases by 58% on account of soil reinforcement in pit. The maximum deflection of diaphragm wall decreases by 61.2% when friction connection is implemented instead of tie connection.
文摘This paper concerns the impact of an operating metro train on the structure of a shield tunnel lining and its soft foundation. An elastoplastic 3D dynamic finite difference model was established by using the FLAC3D numerical soft- ware. By fully considering the joints, the A-B-K segments and the soft stratum, the dynamic response of the shield tunnel buried in thick, soft soil under the vibrating load induced by a metro train was numerically simulated. The simulation result, for which the joint was considered, was compared with the result when the joint was not considered. The results show that an operating metro train induces a significant dynamic response in the structure of the lining of the shield tunnel and its soft foundation. The severe dynamic response zones of the lining structure are largely distributed in the range of the lower half of the segment-ring and the nearer to the bottom of the segment-ring, the more severe the response. Of two horizontally symmetric, corresponding places on the segment lining, the one near the joint is more severe in its dynamic response than that of the one far from the joint; the nearer the zone of the foundation soil to the lower half of the seg- ment-ring, the more severe the dynamic response. The maximum shear strain of the foundation soil takes place near the joint between two normal segments at the bottom. The dynamic response influenced by joints is more severe than the response not influenced by joints, showing that the non-joint assumption is somewhat impractical.
基金financially supported by Offshore Engineering Equipment Scientific Research Project--Topic on Subsea Production System DesignKey Equipment Research & Development from Ministry of Industry and Information Technology of the People's Republic of China E-0813C003
文摘Thesubsea dynamic riser base (SDRB) is an important piece of equipment for the floating production platform mooring system.One end is connected to the rigid pipeline, carrying a rigid pipeline thermal expansion load and the other end is connected to a flexible riser, carrying the dynamic load of the flexible riser, so its function is a transition connection between the flexible riser and the rigid pipeline which fixes the flexible riser on the seabed. On the other hand. as a typical subsea product, the design will satisfythe requirements of the standards for subsea products. By studying the stress analysisphilosophy of the topside piping and subsea pipeline, a physical model and procedure for piping stress analysis of the SDRB have been established.The conditions of the adverse design load have been considered, and a combination of the static load from the rigid pipeline and the dynamic load flexibility has also been optimized. And a comparative analysis between the AMSE, DNV and API standards for piping stress with the checking rules has been done.Because theSDRB belongs to the subsea pipeline terminal product, the use of DNV standards to check its process piping stress is recommended. Finally, the process piping stress of the SDRB has been calculated, and the results show that the jacket pipe and the carrier pipe stress of the SDRB process piping satisfy the DNV standards as a whole.The bulkhead cannot be accurately simulated by the AutoPIPE software which uses the FEA software ANSYS inthe detailed analysis, but the checking results will still meet the requirements of the DNV standards.
基金Project(F12-256-1-00)supported by the Key Laboratory Program of Shenyang City,ChinaProject(N090403006)supported by the Seed Cultivation Fund,ChinaProject supported by the Research Innovation Fund for Young Teachers,China
文摘Due to the variation of the blade cross-section, the deformation stress and strain of the workpiece keep changing during the rolling process and the conventional rolling theory is no longer valid. The complexity and diversity of the blade cross-section determine it impossible to establish an universal theoretical model for the rolling process. Finite element analysis(FEA) provides a perspective solution to the prediction. The FEA software DEFORM was applied to discovering the deformation, stress, strain and velocity field of the variable cross-section workpiece, and the effects of friction coefficient and rolling speed during the rolling process. which indicates that the average rolling force at friction coefficient of 0.4 is 6.5% higher than that at 0.12, and the rolling velocity has less effect on the equivalent stress and strain distribution, which would confer instructive significance on the theoretical study as well as the engineering practice.
基金Supported by Open Foundation Project of Education Ministry Key Laboratory about Mine Disaster Prevention and Control(MDPC0811)Research Project"Spring Bud Plan"of Shandong University of Science and TechnologyShandong University of Science and Technology Innovation Fund Grant(yca2008-04-01)
文摘By the generalized Kelvin creep model,rheological characteristics of deep softrock and long-term mechanical behaviors of support structures were simulated.Mechanicaldeformation characteristics of support structures under different lining circumstanceswere also analyzed on the basis of deducing the relationship between the generalizedKelvin creep model and implicit creep equations in ANSYS FEM software.The resultsshow that high stress of deep tunnels is the main factor in creep damage;the surroundingrock's deformation binding effect due to lining increases as the thickness increases but theeffect becomes very weak when it increases to a certain value;contact pressure on thelining decreases as its thickness decreases.
基金Project(2009CB724307)supported by the Major State Basic Research Development Program(973 Program)of China
文摘A stress relaxation test has been carried out for Hastelloy C-276 at temperature of 800 ~C and initial stress level of 250 MPa. Based on the experimental stress relaxation curve, the relationship between creep strain rate and stress has been derived. Then, a set of creep constitutive equations has been built and the values of constants arising in the constitutive equations have been determined by fitting the creep strain rate-stress curve. Close agreement between computed results and experimental ones is obtained for stress relaxation data. The creep constitutive equation set has been integrated with the commercial FE (finite element) solver MSC.Marc via the user defined subroutine, CRPLAW, for the vacuum hot bulge forming process modelling of Hastelloy C-276 thin-walled cylindrical workpiece. The temperature field, the radius-direction displacement field and the stress-strain field are calculated and analyzed. Furthermore, the bulging dimension and the final internal diameter of workpiece are predicted and the test results verify the reliability of the finite element method.
文摘Brazing has a wide acceptance in industries and its simplicity in variety of application attracts more and more patronage. The strength of brazing joint determines the reliability of brazed engineering components. So the need to ascertain the reliability or to predict its failure (without some destructive testing) becomes high even with a computer aided analysis using the Finite Element Analysis. Here, we have employed the services of FEA software, Abaqus CAE, as a tool for the computer calculation to investigate a joint case of cemented carbide brazed with silver-based filler metal. In this paper, 2D analysis has been adopted because the thickness of the material (in 2D) does not influence the final calculation results. We have applied constant loading and constant boundary condition to explore data from the elastic and plastic strain analysis through which we were able to predict the maximum joint strength with respect to the joint thickness. The pattern of the meshing was also significant. And the result could be transferable to a real-life field situation. The final results showed that there is an optimum thickness of the filler metal with the maximum strength which matches that obtained from experiment.
文摘Combining the optimization and FEM technology,crashworthiness of aluminum extrusions was studied for an automobile safety plan.The effects of longitudinal stiffeners on the crushing of stiffened square columns were studied considering the damage evolution.The numerical analysis was carried out by ABAQUS software.Subsequently,the collapse behavior of aluminum extrusion damage was validated by comparing against solution published in literature.Finally,in order to find more efficient and lighter crush absorber and achieving minimum peak crushing force,response surface methodology(RSM) has been applied for optimizing the aluminum extrusion tube.
基金Supported by the Key Program of National Natural Science Foundation of China(11432003)the Key Research Project for Henan Universities(15A430009)
文摘For most strip-like plastic injection molded parts, whose cross section size is much smaller than their length, the traditional Hele-Shaw model and three-dimensional model do not work well in the prediction of the warpage be- cause of their special shape. A new solution was suggested in this work. The strip-like plastic part was regarded as a little-curved beam macrnscopically, and was divided into a few one-dimensional elements. On the section of each elemental node location, two-dimensional thermal finite element analysis was made to obtain the non- uniform thermal stress caused by the time difference of the solidification of the plastic melt in the mold. The stress relaxation, or equivalently, strain creep was dealt with by using a special computing model. On the bases of in-mold elastic stress, the final bending moment to the beam was obtained and the warpage was predict- ed in good a^reement with practical cases.
基金Projects(51375032,51175017,51245027)supported by the National Natural Science Foundation of China
文摘In order to describe and control the stress distribution and total deformation of bladed disk assemblies used in the aeroengine, a highly efficient and precise method of probabilistic analysis which is called extremum response surface method(ERSM) is produced based on the previous deterministic analysis results with the finite element model(FEM). In this work, many key nonlinear factors, such as the dynamic feature of the temperature load, the centrifugal force and the boundary conditions, are taken into consideration for the model. The changing patterns with time of bladed disk assemblies about stress distribution and total deformation are obtained during the deterministic analysis, and at the same time, the largest deformation and stress nodes of bladed disk assemblies are found and taken as input target of probabilistic analysis in a scientific and reasonable way. Not only their reliability, historical sample, extreme response surface(ERS) and the cumulative probability distribution function but also their sensitivity and effect probability are obtained. Main factors affecting stress distribution and total deformation of bladed disk assemblies are investigated through the sensitivity analysis of the model. Finally, compared with the response surface method(RSM) and the Monte Carlo simulation(MCS), the results show that this new approach is effective.
基金Supported by the Natural Science Foundation of China (No. 50205028) and the Natural Science Foundation of Chongqing City (No. 2005BB2022 ).
文摘Traditional variation analysis methods are not applicable to non-rigid assemblies due to possible part deformation during the assembly process. This paper presents the use of finite element methods to simulate assembly deformation. The relationship between the parts’ variation and the variation of the key points in final assembly for quality control is set up by calculating the spring back deformation after assembly. Moreover, the optimization method for non-rigid assembly variations based on finite element analysis is presented. The optimal objective is to reduce the manufacturing cost. The approach is implemented by using ANSYS and MATLAB. The test example shows that the proposed method is effective and applicable.
文摘Many problems with underlying variational structure involve a coupling of volume with surface effects.A straight-forward approach in a finite element discretiza- tion is to make use of the surface triangulation that is naturally induced by the volume triangulation.In an adaptive method one wants to facilitate'matching'local mesh modifications,i.e.,local refinement and/or coarsening,of volume and surface mesh with standard tools such that the surface grid is always induced by the volume grid. We describe the concepts behind this approach for bisectional refinement and describe new tools incorporated in the finite element toolbox ALBERTA.We also present several important applications of the mesh coupling.
基金Major State Basic Research Development Program of China ( No.2005CB221505)Research Foundation for the Doctoral Programof Higher Education of China(No.20050248058)
文摘A novel magnetic-controlled switcher type fault current limiter (FCL) based on the topology of the saturated iron core high temperature superconducting FCL is proposed. The magnetic field distribution of the FCL iron core is analyzed by FEA software ANSYS. The current limiting characteristic is investigated by both 3-D field-circuit coupled simulation and Matlab. The experiments on the 220 V/50 A test model show that the FCL can limit the fault current swiftly and effectively,and the FCL has the advantages of simple and reliable structure, flexible control strategy. The simulation and experimental results prove that the theoretical expectation and current limiting performance is satisfactory for practical use.
文摘Based on the APDL (ANSYS Parametric Design Language) and combined with the actual project related to parameters of filling material, imported Duncan-Chang constitutive model which has been widely applied in soil mass and rock-fill in the ANSYS software. With the three-dimensional nonlinear finite element analysis by the mid-point incremental method, what have been computed are the deformation and stress analysis ofNa Ba reservoir CFRD (Concrete Face Rock-fill Dam) in filling period. The calculation results provide practical reference for the dam during construction safety filling stress and deformation analysis and real-time monitoring.
基金Project(51575416) supported by the National Natural Science Foundation of ChinaProject(IRT13087) supported by Innovative Research Team Development Program of Ministry of Education of China+1 种基金Project(2014CFB876) supported by the Natural Science Foundation of Hubei Province,ChinaProject(2012-86) supported by High-end Talent Leading Program of Hubei Province,China
文摘Playing a critical role in transmitting movement and power, the meshing performance of spiral bevel gears has a significant effect on products' operational performance. To evaluate the meshing performance, the accurate three-dimensional(3D) spiral bevel gear models are established through the Pro/E and MATLAB softwares, and the finite element analysis(FEA) methods are applied to the theoretical investigation of the influence of cutter diameter on meshing performance in spiral bevel gears. The results obtained show that the cutter diameter has a significant influence on spiral bevel gears' meshing performance, such as the contact area, contact pressure, bending stress, torsional stiffness and transmission error.
文摘This paper deeply analyses the influence of different local tectonic on stress performance of spatial curved steel box Girder Bridge, using the finite element analysis software to establish space finite element model of this bridge, calculation and analysis were made on the bridge of the strength, stiffness. It has certain reference value for guiding engineering design, have a good foundation for the mechanical properties and stability of linear and nonlinear further study of curved steel box girder.
文摘With the increasing development of Brazil in recent years, major engineering construction works have been designed and built, partieutarly those involving large volumes of mass concrete, such as in the case of dams. Mass concrete, due to its large size and volume, presents a considerable temperature rise caused by cement grain hydration. This temperature rise can be sufficient to cause concrete crack and/or cracking, which may lead to serious problems. In this paper, we sought to study heat generation and temperature field in mass concrete through ANSYS software, which uses finite element method to analyze the problem. This program allows temperatures to be checked for different concrete ages. With that, it is possible to evaluate the temperatures obtained and the factors influencing the results in a short period of time at a low cost. With the help of the software, it is possible to check the temperatures for different concrete properties by analyzing them on different concreting days. Therefore, it was possible to establish that the properties of the concrete directly influence the temperature evolution phenomenon.
文摘V-shape hulls are widely used in peacekeeping efforts such as demining vehicles in order to deflect the blast energy and reduce the effects of mine blast. Blast resistant design and energy absorption enhancement of V-shape plates were carried out using finite element analysis package ABAQUS. Various geometries of V-shape plates with and without interlayer of materials like Al-foams and honeycomb were employed to analyze their effects on the deformation of the plate and applied stresses and strains. The results obtained show that application of metallic foams leads to better response of the plate and consequently results in more energy dissipation, less dame to vehicle and enhances crew survivability.