期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
使用对称性计算一类有限元基函数的二重积分
1
作者 白晓 《高等数学研究》 2022年第1期82-85,共4页
本文使用对称性计算一类有限元基函数在非规则区域的二重积分.通过两个算例验证对称性技巧在重积分计算上所带来的极大便利性.本文的内容进一步说明了使用对称性进行重积分计算在其他学科的应用价值.
关键词 对称性 重积分 有限元基函数
下载PDF
HIGH-ORDER RUNGE-KUTTA DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR 2-D RESONATOR PROBLEM 被引量:2
2
作者 刘梅林 刘少斌 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第3期208-213,共6页
The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and ... The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases. 展开更多
关键词 Runge-Kutta methods finite element methods resonators basis function of high-order polynomial
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部