为提高板结构-声场耦合分析的计算精度,将有限元-径向点插值法(Finite Element-Radial Point Interpolation,FE-RPIM)推广到板结构-声场耦合问题的结构域分析中,推导了FE-RPIM/FEM法分析板结构-声场耦合问题的计算公式。板结构-声场耦...为提高板结构-声场耦合分析的计算精度,将有限元-径向点插值法(Finite Element-Radial Point Interpolation,FE-RPIM)推广到板结构-声场耦合问题的结构域分析中,推导了FE-RPIM/FEM法分析板结构-声场耦合问题的计算公式。板结构-声场耦合分析的FE-RPIM/FEM法在流体域中采用标准的有限元插值函数;在结构域中采用有限元-径向点插值法,其形函数由等参单元形函数和径向点插值函数相结合构成,继承了有限元法的单元兼容性和径向点插值法的Kronecker性质,提高了插值精度。以六面体声场-结构耦合模型为研究对象进行分析,结果表明,与板结构-声场耦合问题分析的有限元/有限元法(Finite element method/Finite element method,FEM/FEM)和光滑有限元/有限元法(Smoothed Finite Element Method/Finite Element Method,SFEM/FEM)相比,FE-RPIM/FEM在分析板结构-声场耦合问题时具有更高的精度。展开更多
为提高板结构-声场耦合分析的计算精度,将有限元-最小二乘点插值法(Finite Element-Least Square Point Interpolation Method,FE-LSPIM)推广到板结构-声场耦合问题的分析中,提出了板结构-声场耦合问题分析的FELSPIM/FE-LSPIM方法,推导...为提高板结构-声场耦合分析的计算精度,将有限元-最小二乘点插值法(Finite Element-Least Square Point Interpolation Method,FE-LSPIM)推广到板结构-声场耦合问题的分析中,提出了板结构-声场耦合问题分析的FELSPIM/FE-LSPIM方法,推导了FE-LSPIM/FE-LSPIM分析板结构-声场耦合问题的计算公式。FE-LSPIM/FE-LSPIM方法应用有限元单元形函数和最小二乘点插值法进行局部逼近,继承了有限元法的单元兼容性和最小二乘插值法的二次多项式完备性,提高了计算精度。以一六面体声场-结构耦合模型为研究对象进行分析,结果表明,与板结构-声场耦合问题分析的FEM/FEM和光滑有限元/有限元(Smoothed Finite Element Method/Finite Element Method,SFEM/FEM)相比,FELSPIM/FE-LSPIM在分析板结构-声场耦合问题时具有更高的精度。展开更多
The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; a...The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; and the finite element equation is established. The velocity field in the element is described by the shape function of the isoparametric element with nine nodes and the pressure field is described by the interpolation function of the four nodes at the vertex of the isoparametric element with nine nodes. The subroutine of the element and the integrated finite element code are generated by the Finite Element Program Generator (FEPG) successfully. The numerical simulation about the incompressible viscous liquid flowing over a cylinder is carded out. The solution agrees with the experimental results very well.展开更多
为提高板结构-声场耦合分析的计算精度,将有限元-最小二乘点插值法(Finite Element-Least Square Point Interpolation Method,FE-LSPIM)推广到板结构-声场耦合问题的结构域分析中,提出了板结构-声场耦合问题分析的FE-LSPIM/FEM(Finite ...为提高板结构-声场耦合分析的计算精度,将有限元-最小二乘点插值法(Finite Element-Least Square Point Interpolation Method,FE-LSPIM)推广到板结构-声场耦合问题的结构域分析中,提出了板结构-声场耦合问题分析的FE-LSPIM/FEM(Finite Element-Least Square Point Interpolation Method/Finite Element Method),推导了FELSPIM/FEM分析板结构-声场耦合问题的计算公式。此方法在结构域中应用四边形单元形函数和最小二乘点插值法进行局部逼近,继承了有限元法的单元兼容性和最小二乘插值法的二次多项式完备性,提高了结构域的计算精度;在流体域中应用标准有限元模型进行分析。以一六面体声场-结构耦合模型为研究对象进行分析,结果表明,与板结构-声场耦合问题分析的FEM/FEM和光滑有限元/有限元(Smoothed Finite Element Method/Finite Element Method,SFEM/FEM)相比,FE-LSPIM/FEM在分析板结构-声场耦合问题时具有更高的精度。展开更多
The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth ord...The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth order problems.展开更多
文摘为提高板结构-声场耦合分析的计算精度,将有限元-径向点插值法(Finite Element-Radial Point Interpolation,FE-RPIM)推广到板结构-声场耦合问题的结构域分析中,推导了FE-RPIM/FEM法分析板结构-声场耦合问题的计算公式。板结构-声场耦合分析的FE-RPIM/FEM法在流体域中采用标准的有限元插值函数;在结构域中采用有限元-径向点插值法,其形函数由等参单元形函数和径向点插值函数相结合构成,继承了有限元法的单元兼容性和径向点插值法的Kronecker性质,提高了插值精度。以六面体声场-结构耦合模型为研究对象进行分析,结果表明,与板结构-声场耦合问题分析的有限元/有限元法(Finite element method/Finite element method,FEM/FEM)和光滑有限元/有限元法(Smoothed Finite Element Method/Finite Element Method,SFEM/FEM)相比,FE-RPIM/FEM在分析板结构-声场耦合问题时具有更高的精度。
文摘为提高板结构-声场耦合分析的计算精度,将有限元-最小二乘点插值法(Finite Element-Least Square Point Interpolation Method,FE-LSPIM)推广到板结构-声场耦合问题的分析中,提出了板结构-声场耦合问题分析的FELSPIM/FE-LSPIM方法,推导了FE-LSPIM/FE-LSPIM分析板结构-声场耦合问题的计算公式。FE-LSPIM/FE-LSPIM方法应用有限元单元形函数和最小二乘点插值法进行局部逼近,继承了有限元法的单元兼容性和最小二乘插值法的二次多项式完备性,提高了计算精度。以一六面体声场-结构耦合模型为研究对象进行分析,结果表明,与板结构-声场耦合问题分析的FEM/FEM和光滑有限元/有限元(Smoothed Finite Element Method/Finite Element Method,SFEM/FEM)相比,FELSPIM/FE-LSPIM在分析板结构-声场耦合问题时具有更高的精度。
文摘The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; and the finite element equation is established. The velocity field in the element is described by the shape function of the isoparametric element with nine nodes and the pressure field is described by the interpolation function of the four nodes at the vertex of the isoparametric element with nine nodes. The subroutine of the element and the integrated finite element code are generated by the Finite Element Program Generator (FEPG) successfully. The numerical simulation about the incompressible viscous liquid flowing over a cylinder is carded out. The solution agrees with the experimental results very well.
文摘为提高板结构-声场耦合分析的计算精度,将有限元-最小二乘点插值法(Finite Element-Least Square Point Interpolation Method,FE-LSPIM)推广到板结构-声场耦合问题的结构域分析中,提出了板结构-声场耦合问题分析的FE-LSPIM/FEM(Finite Element-Least Square Point Interpolation Method/Finite Element Method),推导了FELSPIM/FEM分析板结构-声场耦合问题的计算公式。此方法在结构域中应用四边形单元形函数和最小二乘点插值法进行局部逼近,继承了有限元法的单元兼容性和最小二乘插值法的二次多项式完备性,提高了结构域的计算精度;在流体域中应用标准有限元模型进行分析。以一六面体声场-结构耦合模型为研究对象进行分析,结果表明,与板结构-声场耦合问题分析的FEM/FEM和光滑有限元/有限元(Smoothed Finite Element Method/Finite Element Method,SFEM/FEM)相比,FE-LSPIM/FEM在分析板结构-声场耦合问题时具有更高的精度。
文摘The main aim of this paper is to study the local anisotropic interpolation error estimates. We show that the interpolation of a nonconforming element satisfy the anisotropic property for both the second and fourth order problems.