The compaction and stress generation on terrain were always investigated based on empirical approaches or testing methods for tire/soil interaction.However,the analysis should be performed for various tires and at dif...The compaction and stress generation on terrain were always investigated based on empirical approaches or testing methods for tire/soil interaction.However,the analysis should be performed for various tires and at different soil strengths.With the increasing capacity of numerical computers and simulation software,finite element modeling of tire/terrain interaction seems a good approach for predicting the effect of change on the parameters.In this work,an elaborated 3D model fully complianning with the geometry of radial tire 115/60R13 was established,using commercial code Solidwork Simulation.The hyper-elastic and incompressible rubber as tire main material was analyzed by Moony-Rivlin model.The Drucker-Prager yield criterion was used to model the soil compaction.Results show that the model realistically predicts the laboratory tests outputs of the modeled tire on the soft soil.展开更多
Electromagnetic forming (EMF) is a high-speed forming method which can be quite effective in increasing the forming limits of metal sheet. However, the EMF process is complicated due to magnetic-structure coupling a...Electromagnetic forming (EMF) is a high-speed forming method which can be quite effective in increasing the forming limits of metal sheet. However, the EMF process is complicated due to magnetic-structure coupling analysis. Numerical simulation offers an opportunity to overcome the problem. Nevertheless, most present models for EMF process are limited to 2D axisymmetric model. So, a three-dimensional (3D) finite element model was established to analyze the electromagnetic sheet bulging. The contact between the sheet and the die and the effect of sheet deformation on the magnetic field analysis were both taken into consideration during the forming process. The simulation results of deflection at the sheet center and 20 mm away from the center were in agreement with the experimental ones. The plastic strain energy and plastic strain were analyzed.展开更多
In the present analysis, several parameters used in a numerical simulation are investigated in an integrated study to obtain their influence on the process and results of this simulation. The parameters studied are el...In the present analysis, several parameters used in a numerical simulation are investigated in an integrated study to obtain their influence on the process and results of this simulation. The parameters studied are element formulation, friction coefficient, and material model. Numerical simulations using the non-linear finite element method are conducted to produce virtual experimental data for several collision scenarios. Pattern and size damages caused by collision in a real accident case are assumed as real experimental data, and these are used to validate the method. The element model study performed indicates that the Belytschko-Tsay element formulation should be recommended for use in virtual experiments. It is recommended that the real value of the friction coefficient for materials involved is applied in simulations. For the study of the material model, the application of materials with high yield strength is recommended for use in the side hull structure.展开更多
文摘The compaction and stress generation on terrain were always investigated based on empirical approaches or testing methods for tire/soil interaction.However,the analysis should be performed for various tires and at different soil strengths.With the increasing capacity of numerical computers and simulation software,finite element modeling of tire/terrain interaction seems a good approach for predicting the effect of change on the parameters.In this work,an elaborated 3D model fully complianning with the geometry of radial tire 115/60R13 was established,using commercial code Solidwork Simulation.The hyper-elastic and incompressible rubber as tire main material was analyzed by Moony-Rivlin model.The Drucker-Prager yield criterion was used to model the soil compaction.Results show that the model realistically predicts the laboratory tests outputs of the modeled tire on the soft soil.
基金Project (50875093) supported by the National Natural Science Foundation of China
文摘Electromagnetic forming (EMF) is a high-speed forming method which can be quite effective in increasing the forming limits of metal sheet. However, the EMF process is complicated due to magnetic-structure coupling analysis. Numerical simulation offers an opportunity to overcome the problem. Nevertheless, most present models for EMF process are limited to 2D axisymmetric model. So, a three-dimensional (3D) finite element model was established to analyze the electromagnetic sheet bulging. The contact between the sheet and the die and the effect of sheet deformation on the magnetic field analysis were both taken into consideration during the forming process. The simulation results of deflection at the sheet center and 20 mm away from the center were in agreement with the experimental ones. The plastic strain energy and plastic strain were analyzed.
文摘In the present analysis, several parameters used in a numerical simulation are investigated in an integrated study to obtain their influence on the process and results of this simulation. The parameters studied are element formulation, friction coefficient, and material model. Numerical simulations using the non-linear finite element method are conducted to produce virtual experimental data for several collision scenarios. Pattern and size damages caused by collision in a real accident case are assumed as real experimental data, and these are used to validate the method. The element model study performed indicates that the Belytschko-Tsay element formulation should be recommended for use in virtual experiments. It is recommended that the real value of the friction coefficient for materials involved is applied in simulations. For the study of the material model, the application of materials with high yield strength is recommended for use in the side hull structure.