We prove convergence for a meshfree first-order system least squares(FOSLS) partition of unity finite element method(PUFEM).Essentially,by virtue of the partition of unity,local approximation gives rise to global appr...We prove convergence for a meshfree first-order system least squares(FOSLS) partition of unity finite element method(PUFEM).Essentially,by virtue of the partition of unity,local approximation gives rise to global approximation in H(div)∩H(curl). The FOSLS formulation yields local a posteriori error estimates to guide the judicious allotment of new degrees of freedom to enrich the initial point set in a meshfree dis- cretization.Preliminary numerical results are provided and remaining challenges are discussed.展开更多
This paper proposes a weak Galerkin finite element method to solve incompressible quasi-Newtonian Stokes equations. We use piecewise polynomials of degrees k + 1(k 0) and k for the velocity and pressure in the interio...This paper proposes a weak Galerkin finite element method to solve incompressible quasi-Newtonian Stokes equations. We use piecewise polynomials of degrees k + 1(k 0) and k for the velocity and pressure in the interior of elements, respectively, and piecewise polynomials of degrees k and k + 1 for the boundary parts of the velocity and pressure, respectively. Wellposedness of the discrete scheme is established. The method yields a globally divergence-free velocity approximation. Optimal priori error estimates are derived for the velocity gradient and pressure approximations. Numerical results are provided to confirm the theoretical results.展开更多
In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivati...In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivatives which are defined as distributions.Weak functions and weak derivatives can be approximated by piecewise polynomials with various degrees.Different combination of polynomial spaces leads to different WG finite element methods,which makes WG methods highly flexible and efficient in practical computation.A Lagrange multiplier is introduced to provide a numerical approximation for certain derivatives of the exact solution.With this new feature,the HWG method can be used to deal with jumps of the functions and their flux easily.Optimal order error estimates are established for the corresponding HWG finite element approximations for both primal variables and the Lagrange multiplier.A Schur complement formulation of the HWG method is derived for implementation purpose.The validity of the theoretical results is demonstrated in numerical tests.展开更多
A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) ...A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) stabilization scheme is used for the formulation of the Navier-Stokes equations. For the spatial discretization, the convection term is treated explicitly, while the viscous term is treated implicitly, and for the temporal discretization, a three-step method is employed. The present method is applied to simulate the lid driven cavity problems with different geometries at low and high Reynolds numbers. The results compared with other numerical experiments are found to be feasible and satisfactory.展开更多
The purpose of this paper is to obtain the optimal error estimates of O(h) for the highly nonconforming elements to a fourth order variational inequality with curvature obstacle in a convex domain with simply supporte...The purpose of this paper is to obtain the optimal error estimates of O(h) for the highly nonconforming elements to a fourth order variational inequality with curvature obstacle in a convex domain with simply supported boundary by using the novel function splitting method and the orthogonal properties of the nonconforming finite element spaces.Morley's element approximation is our special case.展开更多
文摘We prove convergence for a meshfree first-order system least squares(FOSLS) partition of unity finite element method(PUFEM).Essentially,by virtue of the partition of unity,local approximation gives rise to global approximation in H(div)∩H(curl). The FOSLS formulation yields local a posteriori error estimates to guide the judicious allotment of new degrees of freedom to enrich the initial point set in a meshfree dis- cretization.Preliminary numerical results are provided and remaining challenges are discussed.
基金supported by Major Research Plan of National Natural Science Foundation of China (Grant No. 91430105)
文摘This paper proposes a weak Galerkin finite element method to solve incompressible quasi-Newtonian Stokes equations. We use piecewise polynomials of degrees k + 1(k 0) and k for the velocity and pressure in the interior of elements, respectively, and piecewise polynomials of degrees k and k + 1 for the boundary parts of the velocity and pressure, respectively. Wellposedness of the discrete scheme is established. The method yields a globally divergence-free velocity approximation. Optimal priori error estimates are derived for the velocity gradient and pressure approximations. Numerical results are provided to confirm the theoretical results.
基金supported by National Natural Science Foundation of China(Grant Nos.11271157,11371171 and 11471141)the Program for New Century Excellent Talents in University of Ministry of Education of China
文摘In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivatives which are defined as distributions.Weak functions and weak derivatives can be approximated by piecewise polynomials with various degrees.Different combination of polynomial spaces leads to different WG finite element methods,which makes WG methods highly flexible and efficient in practical computation.A Lagrange multiplier is introduced to provide a numerical approximation for certain derivatives of the exact solution.With this new feature,the HWG method can be used to deal with jumps of the functions and their flux easily.Optimal order error estimates are established for the corresponding HWG finite element approximations for both primal variables and the Lagrange multiplier.A Schur complement formulation of the HWG method is derived for implementation purpose.The validity of the theoretical results is demonstrated in numerical tests.
基金Project supported by the National Natural Science Foundation of China (No.51078230)the Research Fund for the Doctoral Program of Higher Education of China (No.200802480056)the Key Project of Fund of Science and Technology Development of Shanghai (No.10JC1407900),China
文摘A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) stabilization scheme is used for the formulation of the Navier-Stokes equations. For the spatial discretization, the convection term is treated explicitly, while the viscous term is treated implicitly, and for the temporal discretization, a three-step method is employed. The present method is applied to simulate the lid driven cavity problems with different geometries at low and high Reynolds numbers. The results compared with other numerical experiments are found to be feasible and satisfactory.
文摘The purpose of this paper is to obtain the optimal error estimates of O(h) for the highly nonconforming elements to a fourth order variational inequality with curvature obstacle in a convex domain with simply supported boundary by using the novel function splitting method and the orthogonal properties of the nonconforming finite element spaces.Morley's element approximation is our special case.