期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
五极纵轴激电测深三维有限元正演模拟 被引量:3
1
作者 刘海飞 柳杰 +3 位作者 高寒 郭荣文 童孝忠 麻昌英 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2016年第3期884-892,共9页
本文研究了五极纵轴激电测深三维有限元正演模拟方法。首先,从三个点电流源总电位的边值问题出发,导出了异常电位的边值问题,证明了与异常电位的边值问题对应的变分问题。然后,基于三维连续电性介质模型,推导了有限元法求解变分问题的... 本文研究了五极纵轴激电测深三维有限元正演模拟方法。首先,从三个点电流源总电位的边值问题出发,导出了异常电位的边值问题,证明了与异常电位的边值问题对应的变分问题。然后,基于三维连续电性介质模型,推导了有限元法求解变分问题的计算过程,编制了五极纵轴激电测深的三维模拟程序。最后,通过模拟水平层状介质模型的五极纵轴激电测深曲线,发现最大相对误差小于0.25%,耗费时间为18 s;从精度和效率的角度验证了算法和程序是正确的,为后续模拟复杂地电模型五极纵轴激电测深曲线、分析曲线异常特征规律以及开展反演工作奠定了基础。 展开更多
关键词 五极纵轴激电测深 三维有限元正演模拟 边值问题 变分问题 异常电位
下载PDF
电导率连续变化的线源FCSEM有限元正演模拟 被引量:3
2
作者 汤文武 柳建新 童孝忠 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2013年第5期1646-1654,共9页
为了更好地模拟地下介质连续变化及开展连续介质的反演,对二维电导率分块线性变化的线源频率域可控源电磁法进行了有限元正演模拟,在剖分单元内同时对电场及电导率参数线性插值,使电导率参数在剖分单元之间保持连续变化。首先,提出有限... 为了更好地模拟地下介质连续变化及开展连续介质的反演,对二维电导率分块线性变化的线源频率域可控源电磁法进行了有限元正演模拟,在剖分单元内同时对电场及电导率参数线性插值,使电导率参数在剖分单元之间保持连续变化。首先,提出有限元正演模拟的边值问题及变分问题,并详细论述了有限元的剖分、插值、单元分析及总体合成的各个步骤;其次,采用稀疏存储及基于不完全IU分解的BICGSTAB算法求解复系数方程组,节省了内存并提高了计算速度;然后,对一个均匀半空间模型进行模拟,计算结果表明,低频及高频的有限元数值解都与解析解吻合,证明了算法的正确性;最后,对水平层状模型及垂直断层模型进行正演计算,视电阻率及相位的等值线图均较好地反映出了异常体,说明文中算法能够对电导率连续变化的线源可控源电磁法进行有效地模拟。 展开更多
关键词 分块线性变化 线源 频率域可控源电磁法 有限元正演模拟
下载PDF
三维电阻率测深有限元正演模拟中的边界影响 被引量:2
3
作者 黄俊革 阮百尧 《石油地球物理勘探》 EI CSCD 北大核心 2004年第B11期71-74,共4页
在三维电阻率正演模拟计算中,由于边界单元同样参与计算,边界单元的电阻率取值对三维电阻率测深正演结果具有一定影响,文中指出边界单元与非边界区电阻率值相差2倍时,测量结果的最大相对误差超过5%。文中对均匀介质模型和三维低阻体模... 在三维电阻率正演模拟计算中,由于边界单元同样参与计算,边界单元的电阻率取值对三维电阻率测深正演结果具有一定影响,文中指出边界单元与非边界区电阻率值相差2倍时,测量结果的最大相对误差超过5%。文中对均匀介质模型和三维低阻体模型进行了数值模拟,并得出以下认识:①边界电阻率值的变化基本上不会影响电阻率测深正演断面图的异常形态,但会影响视电阻率值,即低阻边界单元使断面深部的视电阻率值单调递增,高阻边界单元使断面深部的视电阻率值单调递减;②X方向的边界单元电阻率值变化对电阻率测深正演断面结果影响最大,Y、Z方向边界单元电阻率值变化对电阻率测深正演结果的影响基本上可以忽略;③低阻边界对视电阻率测深正演结果的影响略大于高阻边界。 展开更多
关键词 三维电阻率 有限元正演模拟技术 计算方法 地质体 勘探技术
下载PDF
Contrast between 2D inversion and 3D inversion based on 2D high-density resistivity data 被引量:2
4
作者 冯德山 戴前伟 肖波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期224-232,共9页
The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy ... The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties. 展开更多
关键词 high-density resistivity method finite element method forward simulation least square inversion 2D inversion 3D inversion apparent resistivity
下载PDF
Second-generation wavelet finite element based on the lifting scheme for GPR simulation 被引量:1
5
作者 Feng De-Shan Zhang Hua Wang Xun 《Applied Geophysics》 SCIE CSCD 2020年第1期143-153,170,共12页
Ground-penetrating radar(GPR)is a highly efficient,fast and non-destructive exploration method for shallow surfaces.High-precision numerical simulation method is employed to improve the interpretation precision of det... Ground-penetrating radar(GPR)is a highly efficient,fast and non-destructive exploration method for shallow surfaces.High-precision numerical simulation method is employed to improve the interpretation precision of detection.Second-generation wavelet finite element is introduced into the forward modeling of the GPR.As the finite element basis function,the second-generation wavelet scaling function constructed by the scheme is characterized as having multiple scales and resolutions.The function can change the analytical scale arbitrarily according to actual needs.We can adopt a small analysis scale at a large gradient to improve the precision of analysis while adopting a large analytical scale at a small gradient to improve the efficiency of analysis.This approach is beneficial to capture the local mutation characteristics of the solution and improve the resolution without changing mesh subdivision to realize the efficient solution of the forward GPR problem.The algorithm is applied to the numerical simulation of line current radiation source and tunnel non-dense lining model with analytical solutions.Result show that the solution results of the secondgeneration wavelet finite element are in agreement with the analytical solutions and the conventional finite element solutions,thereby verifying the accuracy of the second-generation wavelet finite element algorithm.Furthermore,the second-generation wavelet finite element algorithm can change the analysis scale arbitrarily according to the actual problem without subdividing grids again.The adaptive algorithm is superior to traditional scheme in grid refinement and basis function order increase,which makes this algorithm suitable for solving complex GPR forward-modeling problems with large gradient and singularity. 展开更多
关键词 Ground penetrating radar wave equation second-generation wavelet finite element method lifting scheme forward modeling
下载PDF
Three-dimensional land FD-CSEM forward modeling using edge finite-element method 被引量:3
6
作者 LIU Jian-xin LIU Peng-mao TONG Xiao-zhong 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期131-140,共10页
A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been deve... A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion. 展开更多
关键词 three-dimensional model frequency-domain electromagnetic method horizontal electric dipole forward modeling edge finite-element
下载PDF
3-D direct current resistivity forward modeling by adaptive multigrid finite element method 被引量:9
7
作者 汤井田 王飞燕 +1 位作者 任政勇 郭荣文 《Journal of Central South University》 SCIE EI CAS 2010年第3期587-592,共6页
Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid... Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm. 展开更多
关键词 adaptive multigrid a-posteriori error estimator unstructured mesh V-CYCLE finite element method
下载PDF
Three-dimensional forward modeling for the SBTEM method using an unstructured fi nite-element method 被引量:1
8
作者 Wang Lu-Yuan Yin Chang-Chun +5 位作者 Liu Yun-He Su Yang Ren Xiu-Yan Hui Zhe-Jian Zhang Bo Xiong Bin 《Applied Geophysics》 SCIE CSCD 2021年第1期101-116,130,共17页
In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteri... In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteristics of SBTEM responses for complex geoelectrical models.To solve the double-curl diff usion equation for the electric fi eld,we use an unstructured tetrahedral mesh to discretize the model domain and select the unconditionally stable backward Euler scheme to discretize the time derivative.In our numerical experiments,we use a grounded wire as a transmitting source.After validating the algorithm’s eff ectiveness,we first analyze the diffusion characteristics and detectability of the electromagnetic field.After that,we focus our attention on the distribution and the cause of zero bands for Ex and dBy/dt components with the hope of guiding future field surveys.Finally,by simulating diff erent models,we analyze the capability of the SBTEM method in detecting typical mineral veins so that we can provide a reference for mineral resource exploration in the deep earth. 展开更多
关键词 Surface-to-borehole TEM forward modeling edge-based FE method unstructured grids zero bands
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部