In this paper we give an overview of the present state of fast solvers for the solution of the incompressible Navier-Stokes equations discretized by the finite element method and linearized by Newton or Picard's m...In this paper we give an overview of the present state of fast solvers for the solution of the incompressible Navier-Stokes equations discretized by the finite element method and linearized by Newton or Picard's method.It is shown that block preconditioners form an excellent approach for the solution,however if the grids are not to fine preconditioning with a Saddle point ILU matrix(SILU) may be an attractive alternative. The applicability of all methods to stabilized elements is investigated.In case of the stand-alone Stokes equations special preconditioners increase the efficiency considerably.展开更多
We use the Galerkin approach and the finite-element method to numerically solve the effective-mass Schr¨odinger equation.The accuracy of the solution is explored as it varies with the range of the numerical domai...We use the Galerkin approach and the finite-element method to numerically solve the effective-mass Schr¨odinger equation.The accuracy of the solution is explored as it varies with the range of the numerical domain.The model potentials are those of interdiffused semiconductor quantum wells and axially symmetric quantum wires.Also,the model of a linear harmonic oscillator is considered for comparison reasons.It is demonstrated that the absolute error of the electron ground state energy level exhibits a minimum at a certain domain range,which is thus considered to be optimal.This range is found to depend on the number of mesh nodes N approximately as α_0 log_e^(α1)(α_2N),where the values of the constants α_0,α_1,and α_2are determined by fitting the numerical data.And the optimal range is found to be a weak function of the diffusion length.Moreover,it was demonstrated that a domain range adaptation to the optimal value leads to substantial improvement of accuracy of the solution of the Schr¨odinger equation.展开更多
文摘In this paper we give an overview of the present state of fast solvers for the solution of the incompressible Navier-Stokes equations discretized by the finite element method and linearized by Newton or Picard's method.It is shown that block preconditioners form an excellent approach for the solution,however if the grids are not to fine preconditioning with a Saddle point ILU matrix(SILU) may be an attractive alternative. The applicability of all methods to stabilized elements is investigated.In case of the stand-alone Stokes equations special preconditioners increase the efficiency considerably.
基金Supported by the Ministry of Education,Science,and Technological Development of Serbia and the Flemish fund for Scientific Research(FWO Vlaanderen)
文摘We use the Galerkin approach and the finite-element method to numerically solve the effective-mass Schr¨odinger equation.The accuracy of the solution is explored as it varies with the range of the numerical domain.The model potentials are those of interdiffused semiconductor quantum wells and axially symmetric quantum wires.Also,the model of a linear harmonic oscillator is considered for comparison reasons.It is demonstrated that the absolute error of the electron ground state energy level exhibits a minimum at a certain domain range,which is thus considered to be optimal.This range is found to depend on the number of mesh nodes N approximately as α_0 log_e^(α1)(α_2N),where the values of the constants α_0,α_1,and α_2are determined by fitting the numerical data.And the optimal range is found to be a weak function of the diffusion length.Moreover,it was demonstrated that a domain range adaptation to the optimal value leads to substantial improvement of accuracy of the solution of the Schr¨odinger equation.