An empirical expression of cohesion (C) and friction angle (Ф) for layered rock was suggested. This expression was compared with a test result made by the former researchers. The constitutive relationship of a tr...An empirical expression of cohesion (C) and friction angle (Ф) for layered rock was suggested. This expression was compared with a test result made by the former researchers. The constitutive relationship of a transversely isotropic medium and Mohr-Coulomb criterion in which C and Ф vary with directions were employed, and a relative 3D elasto-plastic FEM code was developed, in which the important thing was to adopt a search-trial method to find the orientation angle (p) of shear failure plane (or weakest shear plane) with respect to the major principal stress as well as the corresponding C and Ф Taking an underground opening as the calculation object, the numerical analyses were carried out by using the FEM code for two cases of transversely isotropic rock and isotropic rock, respectively, and the computation results were compared. The results show that when the rock is a transversely isotropic one, the distributions of displacements, plastic zones and stress contours in the surrounding rock will be non-axisymmetric along the tunnel's vertical axis, which is very different from that of isotropic rock. The stability of the tunnel in transversely isotropic rock is relatively low.展开更多
An accurate finite element ( FE ) model of the human middle ear can provide better understanding of the mechanics of middle ear, and can be used for aiding the design of the implantable middle ear hearing devices. I...An accurate finite element ( FE ) model of the human middle ear can provide better understanding of the mechanics of middle ear, and can be used for aiding the design of the implantable middle ear hearing devices. In this paper, a threedimensional (3D) FE model of the human middle ear was constructed, including the tympanic membrane, ossicular bones, and middle ear suspensory ligaments/museles. This model was constructed based on a complete set of computerized tomography section images of a healthy volunteer's left ear by reverse engineering technology. The validity of this model was confirmed by comparing the motions of the tympanic membrane and stapes footplate obtained by this model with published experimental measurements on human temporal bones. The result shows that the model is reasonable in predicting the biomechanics of the human middle ear.展开更多
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique...H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.展开更多
Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical proper...Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.展开更多
This paper presents a nonlinear finite element method to resolve the problem of the nonlinear contact between the drillstring and hole wall by using a Multi-directional Contact Gap Element (MCGE) contacting at appropr...This paper presents a nonlinear finite element method to resolve the problem of the nonlinear contact between the drillstring and hole wall by using a Multi-directional Contact Gap Element (MCGE) contacting at appropriate positions in each beam element. The method was successfully applied to the Daqing Oil Field GP1 well. It was shown that the drillstring's contact resistance at any well depth could be obtained by calculations and that as the error in the calculation of the hole top load is below 10%, the calculation result can provide theoretical basis for the design and operation of drillstrings.展开更多
V-type ultrasonic linear motor fabricated using a simple punching technique was proposed to utilize as an actuator of small precision machine.The stator of the motor is composed of a thin elastic body and four ceramic...V-type ultrasonic linear motor fabricated using a simple punching technique was proposed to utilize as an actuator of small precision machine.The stator of the motor is composed of a thin elastic body and four ceramics attached to the upper and bottom areas of the body.The ceramics have each direction of polarization.When two harmonic voltages with a 90° phase difference are applied to the ceramics,symmetric and anti-symmetric displacements will generate at the tip to produce an elliptical motion.A finite element analysis(ATILA) was conducted to simulate the motion pattern for the contact tip of the stator.To develop a model that generates the maximum displacement at contact tip,the FEM program was used for various lengths.In addition,an optimal model was chosen by considering the magnitude and shape of the displacement according to changes in frequency.The maximum elliptical displacement is shown by W2L11 model,which has a ratio of ceramic width to length of 1:5.5.However,the displacement of the contact tip is reduced by the bucking phenomenon if the ratio is larger than 1:6.展开更多
In order to analyze the seismic response characteristics of pile-supported structure,a computational model considering pile-soil-structure interaction effect was established by finite element method.Then,numerical imp...In order to analyze the seismic response characteristics of pile-supported structure,a computational model considering pile-soil-structure interaction effect was established by finite element method.Then,numerical implementation was made in time domain.At the same time,a simplified approximation for seismic response analysis of pile-soil-structure system was briefly presented.Furthermore,comparative study was performed for an engineering example.Through comparative analysis,it is shown that the results obtained by the simplified method well agree with those achieved by the finite element method.These results show that spectrum characteristics and intensity of input earthquakes are two important factors that can notablely influence the seismic response characteristics of superstructure.When the input ground motion acceleration amplitude gradually increases from 1 to 4 m/s2,the acceleration of pier top will increase,but it will not be simply proportional to the increase of input acceleration amplitude.展开更多
To improve global control of disease and reduce global toxicity, a complex seed distribution pattern should be achieved with great accuracy during brachytherapy.However, the interaction between the needle and prostate...To improve global control of disease and reduce global toxicity, a complex seed distribution pattern should be achieved with great accuracy during brachytherapy.However, the interaction between the needle and prostate will cause large deformation of soft tissue.As a result, seeds will be misplaced, sharp demarcation between irradiated volume and healthy structures is unavailable and this will cause side effects such as impotence and urinary incontinence.In this paper, a 3D nonlinear dynamic finite element s...展开更多
Dynamic responses of track structure and wave propagation in nearby ground vibration become significant when train operates on high speeds. A train-track-ground dynamic interaction analysis model based on the 2.5D fin...Dynamic responses of track structure and wave propagation in nearby ground vibration become significant when train operates on high speeds. A train-track-ground dynamic interaction analysis model based on the 2.5D finite element method is developed for the prediction of ground vibrations due to vertical track irregularities. The one-quarter car mode,1 is used to represent the train as lumped masses connected by springs. The embankment and the underlying ground are modeled by the 2.5D finite element approach to improve the computation efficiency. The Fourier transform is applied in the direction of train's movement to express the wave motion with a wave-number. The one-quarter car model is coupled into the global stiffness matrix describing the track-ground dynamic system with the displacement compatibility condition at the wheel-rail interface, including the irregularities on the track surface. Dynamic responses of the track and ground due to train's moving loads are obtained in the wave-number domain by solving the governing equation, using a conventional finite element procedure. The amplitude and wavelength are identified as two major parameters describing track irregularities. The irregularity amplitude has a direct impact on the vertical response for low-speed trains, both for short wavelength and long wavelength irregularities. Track irregularity with shorter wavelength can generate stronger track vibration both for low-speed and high-speed cases. For low-speed case, vibrations induced by track irregularities dominate far field responses. For high-speed case, the wavelength of track irregularities has very little effect on ground vibration at distances far from track center, and train's wheel axle weights becomes dominant.展开更多
By using the Monte Carlo method and numerical finite elementapproach, bistatic scattering from the fractal and Gaussian rough surfaces is studied. The difference between these two surfaces and their functional depende...By using the Monte Carlo method and numerical finite elementapproach, bistatic scattering from the fractal and Gaussian rough surfaces is studied. The difference between these two surfaces and their functional dependence on the surface parameters are discussed. Angular variation of bistatic scattering from the fractal surface is very significant, even for fairly smooth surface, whilst scattering from the Gaussian rough surface tends to the specular reflection. The slope of angular variation is linearly related with the fractal dimension. If an electrically_large target is placed over the rough surface, the fractal dimension inverted from bistatic scattering would be reduced. As the surfaces become very rough, scattering from different fractal and Gaussian surfaces would be not identified.展开更多
Steel plates are widely used in various structures, such as the deck and bodies of ships and bridges, and in the aerospace industry. In many instances, these plates are subjected to axial compression loads that predis...Steel plates are widely used in various structures, such as the deck and bodies of ships and bridges, and in the aerospace industry. In many instances, these plates are subjected to axial compression loads that predispose the sheets to instability and buckling. In this study, we investigate the buckling and post-buckling behaviors of steel plates having groove-shaped cutouts of various dimensions and angles using finite element method (FEM) (by ABAQUS software) and experimental tests (by an Instron servohydraulic machine). Boundary conditions were clamped by supports at upper and lower ends and free supports at the other edges. The results of both numerical and experimental analyses are compared, which show a very good agreement between them. Finally, based on the experimental findings, formulas are presented for the determination of the buckling load of such plates.展开更多
The sensitivity problem to mesh distortion and the low accuracy problem of the stress solutions are two inherent difficulties in the finite element method.By applying the fundamental analytical solutions (in global Ca...The sensitivity problem to mesh distortion and the low accuracy problem of the stress solutions are two inherent difficulties in the finite element method.By applying the fundamental analytical solutions (in global Cartesian coordinates) to the Airy stress function of the anisotropic materials,8-and 12-node plane quadrilateral hybrid stress-function (HS-F) elements are successfully developed based on the principle of the minimum complementary energy.Numerical results show that the present new elements exhibit much better and more robust performance in both displacement and stress solutions than those obtained from other models.They can still perform very well even when the element shapes degenerate into a triangle and a concave quadrangle.It is also demonstrated that the proposed construction procedure is an effective way for developing shape-free finite element models which can completely overcome the sensitivity problem to mesh distortion and can produce highly accurate stress solutions.展开更多
This study employs the random finite element method (RFEM) to analyze the wall deflection caused by excavation. The RFEM combined random fields of material properties with the FEM through the Monte Carlo simulation. A...This study employs the random finite element method (RFEM) to analyze the wall deflection caused by excavation. The RFEM combined random fields of material properties with the FEM through the Monte Carlo simulation. A well-documented excavation case history is employed to evaluate the influence of uncertainty of analysis parameters. This study shows that RFEM can provide reasonable estimations of the exceedance probability of wall deflection caused by excavation, and has the potential to be a useful tool to account for the uncertainties of material and model parameters in the numerical analysis.展开更多
A new 12-parameter rectangular plate element is presented by useof the double set parameter method. The error in the energy norm is of order O(h2), one order higher than the commonly used Adini nonconforming element.
Compared to the current eddy braking patterns using a single magnetic source,hybrid excitation rail eddy brakes have many advantages,such as controllability,energy saving,and various operating models.Considering the l...Compared to the current eddy braking patterns using a single magnetic source,hybrid excitation rail eddy brakes have many advantages,such as controllability,energy saving,and various operating models.Considering the large braking power consumption of the high-speed train,a hybrid excitation rail eddy brake system,which is based on the principle of electromagnetic field,is proposed to fulfill the needs of safety and reliability.Then the working processes of the mechanical lifting system and electromagnetic system are demonstrated.With the electromagnetic system analyzed using the finite element method,the factors such as speed,air gap,and exciting current have influences on the braking force and attractive force.At last,the structure optimization of the brake system is discussed.展开更多
The numerical manifold method(NMM) features its dual cover systems, namely the mathematical cover and physical cover,which provide a unified framework for mechanics problems involving continuum and discontinuum deform...The numerical manifold method(NMM) features its dual cover systems, namely the mathematical cover and physical cover,which provide a unified framework for mechanics problems involving continuum and discontinuum deformation. Uniform finite element meshes can be and are usually used to construct the mathematical cover. Though this strategy can handle different kinds of problems in a unified way, it is not economical for cases with steep deformation gradients or singularities. In this paper, using the recovery-based error estimator, an h-adaptive NMM on quadtree meshes is proposed to deal with such cases. The quadtree meshes serve as the mathematical meshes, on which the local refinement is carried out. When the quadtree meshes are refined,the corresponding mathematical cover, physical cover and manifold elements are updated accordingly. To handle the hanging nodes in the quadtree meshes, we resort to mean value coordinates. Comparing to the refinement based on manifold elements,the proposed strategy guarantees consistent structured meshes throughout the adaptive process, thus retaining the unique feature of original NMM. In contrast with polygonal finite element method, an advantage of the proposed method is that the meshes do not need to conform to the crack face and material boundary, which means the adaptive NMM is very suitable for problems with complex geometric boundary. Several representative mechanics problems, including crack problems, are analyzed to investigate the effectiveness of the proposed method. It is demonstrated that the proposed adaptive NMM has higher accuracy and better performance comparing to uniform refinement strategy.展开更多
A type of hollow cylinder joints connected with H-shaped beams is proposed for spatial structures. Based on von Mises yield criterion and perfect elasto-plasticity model, a series of finite element models of the joint...A type of hollow cylinder joints connected with H-shaped beams is proposed for spatial structures. Based on von Mises yield criterion and perfect elasto-plasticity model, a series of finite element models of the joints is established, in which the effect of geometric nonlinearity is taken into account. Then mechanical behavior and load-carrying capacity of the joints were investigated, which were subjected to axial load, in- and out-plane bending moments, and their combinations. The results show that the ultimate loads of the joints are determined by the maximum displacement. Furthermore, the case of one joint connected with multiple beams was discussed. Experiments on a set of typical full-scale joints were conducted to understand the structural behavior and the failure mechanism of joint, and also to validate the finite element models. Finally, the practical calculation method was established through finite elements analysis (FEA) results and numerical fitting. The results show that the joints are more ductile and materially economical than welded hollow spherical joints, and the practical calculation method can provide a reference for direct design and the revision of relevant design codes.展开更多
An all-fiber LP_(01)-LP_(11) mode convertor based on side-polished small-core single-mode fibers(SMFs) is numerically demonstrated. The linearly polarized incident beam in one arm experiences π shift through a fiber ...An all-fiber LP_(01)-LP_(11) mode convertor based on side-polished small-core single-mode fibers(SMFs) is numerically demonstrated. The linearly polarized incident beam in one arm experiences π shift through a fiber half waveplate, and the side-polished parts merge into an equivalent twin-core fiber(TCF) which spatially shapes the incident LP_(01) modes to the LP_(11) mode supported by the step-index few-mode fiber(FMF). Optimum conditions for the highest conversion efficiency are investigated using the beam propagation method(BPM) with an approximate efficiency as high as 96.7%. The proposed scheme can operate within a wide wavelength range from 1.3 μm to1.7 μm with overall conversion efficiency greater than 95%. The effective mode area and coupling loss are also characterized in detail by finite element method(FEM).展开更多
基金Project(2010CB732101) supported by the National Basic Research Program of China Project(51079145) supported by the National Natural Science Foundation of China
文摘An empirical expression of cohesion (C) and friction angle (Ф) for layered rock was suggested. This expression was compared with a test result made by the former researchers. The constitutive relationship of a transversely isotropic medium and Mohr-Coulomb criterion in which C and Ф vary with directions were employed, and a relative 3D elasto-plastic FEM code was developed, in which the important thing was to adopt a search-trial method to find the orientation angle (p) of shear failure plane (or weakest shear plane) with respect to the major principal stress as well as the corresponding C and Ф Taking an underground opening as the calculation object, the numerical analyses were carried out by using the FEM code for two cases of transversely isotropic rock and isotropic rock, respectively, and the computation results were compared. The results show that when the rock is a transversely isotropic one, the distributions of displacements, plastic zones and stress contours in the surrounding rock will be non-axisymmetric along the tunnel's vertical axis, which is very different from that of isotropic rock. The stability of the tunnel in transversely isotropic rock is relatively low.
基金National Natural Science Foundation of China ( No. 10772121)Med-Science Cross Research Foundation of Shanghai Jiaotong University, China(No.YG2007MS14)
文摘An accurate finite element ( FE ) model of the human middle ear can provide better understanding of the mechanics of middle ear, and can be used for aiding the design of the implantable middle ear hearing devices. In this paper, a threedimensional (3D) FE model of the human middle ear was constructed, including the tympanic membrane, ossicular bones, and middle ear suspensory ligaments/museles. This model was constructed based on a complete set of computerized tomography section images of a healthy volunteer's left ear by reverse engineering technology. The validity of this model was confirmed by comparing the motions of the tympanic membrane and stapes footplate obtained by this model with published experimental measurements on human temporal bones. The result shows that the model is reasonable in predicting the biomechanics of the human middle ear.
基金Supported by NNSF(10601022,11061021)Supported by NSF of Inner Mongolia Au-tonomous Region(200607010106)Supported by SRP of Higher Schools of Inner Mongolia(NJ10006)
文摘H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.
基金Foundation of Key Laboratory of Coast Civil Structure Safety (Tianjin University),Ministry of EducationChinese Program for New Century Excellent Talents in University+1 种基金Seed Foundation of Tianjin UniversitySeed Foundation of Xinjiang University
文摘Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.
文摘This paper presents a nonlinear finite element method to resolve the problem of the nonlinear contact between the drillstring and hole wall by using a Multi-directional Contact Gap Element (MCGE) contacting at appropriate positions in each beam element. The method was successfully applied to the Daqing Oil Field GP1 well. It was shown that the drillstring's contact resistance at any well depth could be obtained by calculations and that as the error in the calculation of the hole top load is below 10%, the calculation result can provide theoretical basis for the design and operation of drillstrings.
基金Project supported by the Second Stage of Brain Korea 21 ProjectProject(2009-0088570) supported by the National Research Foundation of Korea
文摘V-type ultrasonic linear motor fabricated using a simple punching technique was proposed to utilize as an actuator of small precision machine.The stator of the motor is composed of a thin elastic body and four ceramics attached to the upper and bottom areas of the body.The ceramics have each direction of polarization.When two harmonic voltages with a 90° phase difference are applied to the ceramics,symmetric and anti-symmetric displacements will generate at the tip to produce an elliptical motion.A finite element analysis(ATILA) was conducted to simulate the motion pattern for the contact tip of the stator.To develop a model that generates the maximum displacement at contact tip,the FEM program was used for various lengths.In addition,an optimal model was chosen by considering the magnitude and shape of the displacement according to changes in frequency.The maximum elliptical displacement is shown by W2L11 model,which has a ratio of ceramic width to length of 1:5.5.However,the displacement of the contact tip is reduced by the bucking phenomenon if the ratio is larger than 1:6.
基金Project(Y2007F48) supported by the Natural Science Foundation of Shandong Province,ChinaProject(SDTS20080422) supported by the Specialized Development Foundation for Taishan Scholars of Shandong Province, China Project(SDVS20090525) supported by the Specialized Foundation for Domestic Visiting Scholars of Shandong Province,China
文摘In order to analyze the seismic response characteristics of pile-supported structure,a computational model considering pile-soil-structure interaction effect was established by finite element method.Then,numerical implementation was made in time domain.At the same time,a simplified approximation for seismic response analysis of pile-soil-structure system was briefly presented.Furthermore,comparative study was performed for an engineering example.Through comparative analysis,it is shown that the results obtained by the simplified method well agree with those achieved by the finite element method.These results show that spectrum characteristics and intensity of input earthquakes are two important factors that can notablely influence the seismic response characteristics of superstructure.When the input ground motion acceleration amplitude gradually increases from 1 to 4 m/s2,the acceleration of pier top will increase,but it will not be simply proportional to the increase of input acceleration amplitude.
基金Supported by National Natural Science Foundation of China (No.60703045)
文摘To improve global control of disease and reduce global toxicity, a complex seed distribution pattern should be achieved with great accuracy during brachytherapy.However, the interaction between the needle and prostate will cause large deformation of soft tissue.As a result, seeds will be misplaced, sharp demarcation between irradiated volume and healthy structures is unavailable and this will cause side effects such as impotence and urinary incontinence.In this paper, a 3D nonlinear dynamic finite element s...
基金Project supported by the National Key Technology R&D Program of the Ministry of Science and Technology of China(No.2009BAG12A01-B12-3)the National Natural Science Foundation of China(No.51178418)the Technology Promotion Program from the Ministry of Railway of China(No.2008G005-D)
文摘Dynamic responses of track structure and wave propagation in nearby ground vibration become significant when train operates on high speeds. A train-track-ground dynamic interaction analysis model based on the 2.5D finite element method is developed for the prediction of ground vibrations due to vertical track irregularities. The one-quarter car mode,1 is used to represent the train as lumped masses connected by springs. The embankment and the underlying ground are modeled by the 2.5D finite element approach to improve the computation efficiency. The Fourier transform is applied in the direction of train's movement to express the wave motion with a wave-number. The one-quarter car model is coupled into the global stiffness matrix describing the track-ground dynamic system with the displacement compatibility condition at the wheel-rail interface, including the irregularities on the track surface. Dynamic responses of the track and ground due to train's moving loads are obtained in the wave-number domain by solving the governing equation, using a conventional finite element procedure. The amplitude and wavelength are identified as two major parameters describing track irregularities. The irregularity amplitude has a direct impact on the vertical response for low-speed trains, both for short wavelength and long wavelength irregularities. Track irregularity with shorter wavelength can generate stronger track vibration both for low-speed and high-speed cases. For low-speed case, vibrations induced by track irregularities dominate far field responses. For high-speed case, the wavelength of track irregularities has very little effect on ground vibration at distances far from track center, and train's wheel axle weights becomes dominant.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 49831060, 69771007) National 863-818-06-05.
文摘By using the Monte Carlo method and numerical finite elementapproach, bistatic scattering from the fractal and Gaussian rough surfaces is studied. The difference between these two surfaces and their functional dependence on the surface parameters are discussed. Angular variation of bistatic scattering from the fractal surface is very significant, even for fairly smooth surface, whilst scattering from the Gaussian rough surface tends to the specular reflection. The slope of angular variation is linearly related with the fractal dimension. If an electrically_large target is placed over the rough surface, the fractal dimension inverted from bistatic scattering would be reduced. As the surfaces become very rough, scattering from different fractal and Gaussian surfaces would be not identified.
文摘Steel plates are widely used in various structures, such as the deck and bodies of ships and bridges, and in the aerospace industry. In many instances, these plates are subjected to axial compression loads that predispose the sheets to instability and buckling. In this study, we investigate the buckling and post-buckling behaviors of steel plates having groove-shaped cutouts of various dimensions and angles using finite element method (FEM) (by ABAQUS software) and experimental tests (by an Instron servohydraulic machine). Boundary conditions were clamped by supports at upper and lower ends and free supports at the other edges. The results of both numerical and experimental analyses are compared, which show a very good agreement between them. Finally, based on the experimental findings, formulas are presented for the determination of the buckling load of such plates.
基金supported by the National Natural Science Foundation of China(Grant No.10872108,10876100)the Program for New Century Excellent Talents in University(Grant No. NCET-07-0477)+1 种基金the National Basic Research Program of China(Grant No. 2010CB832701)ASFC
文摘The sensitivity problem to mesh distortion and the low accuracy problem of the stress solutions are two inherent difficulties in the finite element method.By applying the fundamental analytical solutions (in global Cartesian coordinates) to the Airy stress function of the anisotropic materials,8-and 12-node plane quadrilateral hybrid stress-function (HS-F) elements are successfully developed based on the principle of the minimum complementary energy.Numerical results show that the present new elements exhibit much better and more robust performance in both displacement and stress solutions than those obtained from other models.They can still perform very well even when the element shapes degenerate into a triangle and a concave quadrangle.It is also demonstrated that the proposed construction procedure is an effective way for developing shape-free finite element models which can completely overcome the sensitivity problem to mesh distortion and can produce highly accurate stress solutions.
基金Project (No. NSC 99-2221-E-146-004) supported by the National Science Council
文摘This study employs the random finite element method (RFEM) to analyze the wall deflection caused by excavation. The RFEM combined random fields of material properties with the FEM through the Monte Carlo simulation. A well-documented excavation case history is employed to evaluate the influence of uncertainty of analysis parameters. This study shows that RFEM can provide reasonable estimations of the exceedance probability of wall deflection caused by excavation, and has the potential to be a useful tool to account for the uncertainties of material and model parameters in the numerical analysis.
文摘A new 12-parameter rectangular plate element is presented by useof the double set parameter method. The error in the energy norm is of order O(h2), one order higher than the commonly used Adini nonconforming element.
基金Project supported by the National Natural Science Foundation of China(Nos.50877070 and 51105331)the Special Financial Grant from the China Postdoctoral Science Foundation(Nos.201104720 and 201104721)
文摘Compared to the current eddy braking patterns using a single magnetic source,hybrid excitation rail eddy brakes have many advantages,such as controllability,energy saving,and various operating models.Considering the large braking power consumption of the high-speed train,a hybrid excitation rail eddy brake system,which is based on the principle of electromagnetic field,is proposed to fulfill the needs of safety and reliability.Then the working processes of the mechanical lifting system and electromagnetic system are demonstrated.With the electromagnetic system analyzed using the finite element method,the factors such as speed,air gap,and exciting current have influences on the braking force and attractive force.At last,the structure optimization of the brake system is discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11602165&51479131)Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z015010)the Natural Science Fund of Tianjin City(Grant No.16JCQNJC07800)
文摘The numerical manifold method(NMM) features its dual cover systems, namely the mathematical cover and physical cover,which provide a unified framework for mechanics problems involving continuum and discontinuum deformation. Uniform finite element meshes can be and are usually used to construct the mathematical cover. Though this strategy can handle different kinds of problems in a unified way, it is not economical for cases with steep deformation gradients or singularities. In this paper, using the recovery-based error estimator, an h-adaptive NMM on quadtree meshes is proposed to deal with such cases. The quadtree meshes serve as the mathematical meshes, on which the local refinement is carried out. When the quadtree meshes are refined,the corresponding mathematical cover, physical cover and manifold elements are updated accordingly. To handle the hanging nodes in the quadtree meshes, we resort to mean value coordinates. Comparing to the refinement based on manifold elements,the proposed strategy guarantees consistent structured meshes throughout the adaptive process, thus retaining the unique feature of original NMM. In contrast with polygonal finite element method, an advantage of the proposed method is that the meshes do not need to conform to the crack face and material boundary, which means the adaptive NMM is very suitable for problems with complex geometric boundary. Several representative mechanics problems, including crack problems, are analyzed to investigate the effectiveness of the proposed method. It is demonstrated that the proposed adaptive NMM has higher accuracy and better performance comparing to uniform refinement strategy.
基金Project supported by the National Natural Science Foundation of China (No. 51178414)the Science Foundation of Zhejiang Province (No. Y1110438), China
文摘A type of hollow cylinder joints connected with H-shaped beams is proposed for spatial structures. Based on von Mises yield criterion and perfect elasto-plasticity model, a series of finite element models of the joints is established, in which the effect of geometric nonlinearity is taken into account. Then mechanical behavior and load-carrying capacity of the joints were investigated, which were subjected to axial load, in- and out-plane bending moments, and their combinations. The results show that the ultimate loads of the joints are determined by the maximum displacement. Furthermore, the case of one joint connected with multiple beams was discussed. Experiments on a set of typical full-scale joints were conducted to understand the structural behavior and the failure mechanism of joint, and also to validate the finite element models. Finally, the practical calculation method was established through finite elements analysis (FEA) results and numerical fitting. The results show that the joints are more ductile and materially economical than welded hollow spherical joints, and the practical calculation method can provide a reference for direct design and the revision of relevant design codes.
基金supported by the Fundamental Research Funds for the Central Universities(No.2016JBM002)
文摘An all-fiber LP_(01)-LP_(11) mode convertor based on side-polished small-core single-mode fibers(SMFs) is numerically demonstrated. The linearly polarized incident beam in one arm experiences π shift through a fiber half waveplate, and the side-polished parts merge into an equivalent twin-core fiber(TCF) which spatially shapes the incident LP_(01) modes to the LP_(11) mode supported by the step-index few-mode fiber(FMF). Optimum conditions for the highest conversion efficiency are investigated using the beam propagation method(BPM) with an approximate efficiency as high as 96.7%. The proposed scheme can operate within a wide wavelength range from 1.3 μm to1.7 μm with overall conversion efficiency greater than 95%. The effective mode area and coupling loss are also characterized in detail by finite element method(FEM).