期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
用有限区域风速场准确求解流函数和速度势场的方法 被引量:9
1
作者 朱宗申 朱国富 张林 《大气科学》 CSCD 北大核心 2009年第4期811-824,共14页
流函数和速度势是气象业务和研究中常用于表述风速的一组变量。用有限区域风速场,使用有限差分方法求解得到的流函数和速度势场重建初始风速场,由于受区域边界的限制往往有明显的偏差。虽然有许多求解方法的研究,但是,至今仍尚未见到一... 流函数和速度势是气象业务和研究中常用于表述风速的一组变量。用有限区域风速场,使用有限差分方法求解得到的流函数和速度势场重建初始风速场,由于受区域边界的限制往往有明显的偏差。虽然有许多求解方法的研究,但是,至今仍尚未见到一种真正准确的求解计算方案。首先,介绍用Arakawa A网格和D网格分布的有限区域风速场求解流函数和速度势场的一般有限差分计算方法,探讨用它们的解重建风速场产生误差的原因。然后,针对这些原因,对给定的有限区域,通过线性外推初始风速场,扩展求解计算区域,使用协调、一致的有限差分格式方案,准确计算求解区域的边界有旋风速、散度风速和速度势的定解边界条件,以及恰当选择流函数、速度势、涡度和散度等变量的分布网格,设计了用上述两种网格分布的风速场准确求解流函数、速度势场的方案,并对其正确性加以证明,它们可以推广应用于其他Arakawa网格。用实际资料试验同样显示,方案避免了重建风速场误差的出现,与初始风速场相比,全场风速最大偏差精度达到10-12m/s或以上,在计算机精度造成的计算误差影响范围内。本文的研究很好解决了长期以来用有限区域风速场、使用有限差分方法无法准确求解流函数和速度势场的问题。 展开更多
关键词 有限区城 准确求解流函数和速度势 误差分析 Arakawa网格方案 有限差分方法
下载PDF
Response of carrying capacity of piles induced by adjacent Metro tunneling 被引量:6
2
作者 YANG Xiao-jie DENG Fei-huang +2 位作者 WU Jia-jia LIU Jian WANG Fu-qiang 《Mining Science and Technology》 EI CAS 2009年第2期176-181,共6页
Construction of tunnels in urban areas requires assessment of the impact of tunneling on the stability and integrity of existing pile foundations. We have focused our attention to the analysis of the carrying capacity... Construction of tunnels in urban areas requires assessment of the impact of tunneling on the stability and integrity of existing pile foundations. We have focused our attention to the analysis of the carrying capacity of pile foundations provided by the impact of construction of urban tunnels on adjacent pile foundations, under the engineering background of the construction of the # 2 Line of the Guangzhou subway. It is carried out using a fast Lagrangian analysis of a continuum in a 3D numerical code, which is an elastoplastic three-dimensional finite difference model, to simulate the response of piles under the entire process of metro tunneling (deactivation of soil element and activation of the lining). The adjacent stratum around the tunnel is classified into three regions: Zone Ⅰ (upper adjacent stratum of tunnel), Zone Ⅱ (45°-upper-lateral adjacent stratum of tunnel) and Zone Ⅲ (lateral adjacent stratum of tunnel). In each region one typical pile is chosen to be calculated and analyzed in detail. Numerical simulations are mainly conducted at three points of each pile shaft: the side-friction force of the pile, the tip resistance of the pile and the axial loading of the pile. A contrasting analysis has been conducted both in the response of typical piles in different regions and from computer calculated values with site monitoring values. The results of numerical simulations show that the impact on carrying capacity of the piles lies mainly in the impact of construction of urban tunnels on the side-friction forces and the tip resistance of piles. The impact differs considerably among the different strata zones where the pile tips are located. The complicated rules of side-friction force and tip resistance of piles has resulted in complicated rules of pile axial loading thus, in the end, it impacts the carrying capacity of pile-foundations. It is necessary to take positive measures, such as stratum grouting stabilization or foundation underpinning, etc, to deal with the carrying capacity and the settlement of pile-foundations. The results are of value to similar engineering projects. 展开更多
关键词 TUNNEL numerical simulation pile foundation carrying capacity of pile axial force of pile side-friction force of pile tipresistance of pile
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部