This paper deals with the shape and influenced factors of surface non-continuous deformation due to mining. With finite element method, analysis are made to derive the relations between discontinuous deformation and m...This paper deals with the shape and influenced factors of surface non-continuous deformation due to mining. With finite element method, analysis are made to derive the relations between discontinuous deformation and mining affection, weak plane’s position & thickness, and mechanical property of weak-plane medium. The mutual affection of multiple weak-planes is also discussed. The results of the paper lay a foundation for constructing the calculation method of surface discontinuous deformation.展开更多
The majority of foot deformities are related to arch collapse or instability,especially the longitudinal arch.Although the relationship between the plantar fascia and arch height has been previously investigated,the s...The majority of foot deformities are related to arch collapse or instability,especially the longitudinal arch.Although the relationship between the plantar fascia and arch height has been previously investigated,the stress distribution remains unclear.The aim of this study was to explore the role of the plantar ligaments in foot arch biomechanics.We constructed a geometrical detailed three-dimensional (3-D) finite element (FE) model of the human foot and ankle from computer tomography images.The model comprised the majority of joints in the foot as well as bone segments,major ligaments,and plantar soft tissue.Release of the plantar fascia and other ligaments was simulated to evaluate the corresponding biomechanical effects on load distribution of the bony and ligamentous structures.These intrinsic ligaments of the foot arch were sectioned to simulate different pathologic situations of injury to the plantar ligaments,and to explore bone segment displacement and stress distribution.The validity of the 3-D FE model was verified by comparing results with experimentally measured data via the displacement and von Mise stress of each bone segment.Plantar fascia release decreased arch height,but did not cause total collapse of the foot arch.The longitudinal foot arch was lost when all the four major plantar ligaments were sectioned simultaneously.Plantar fascia release was compromised by increased strain applied to the plantar ligaments and intensified stress in the midfoot and metatarsal bones.Load redistribution among the centralized metatarsal bones and focal stress relief at the calcaneal insertion were predicted.The 3-D FE model indicated that plantar fascia release may provide relief of focal stress and associated heel pain.However,these operative procedures may pose a risk to arch stability and clinically may produce dorsolateral midfoot pain.The initial strategy for treating plantar fasciitis should be non-operative.展开更多
Based on the non-equilibrium thermodynamics,an internal-variable theory in thermo-viscoelasticity at finite deformation was proposed by Huang in 1999.In this theory,a modified stretch of the molecular chain was introd...Based on the non-equilibrium thermodynamics,an internal-variable theory in thermo-viscoelasticity at finite deformation was proposed by Huang in 1999.In this theory,a modified stretch of the molecular chain was introduced,and hence the molecular network model in rubber elasticity was extended to take into account the viscous and thermal effects of the material.The viscous dissipation of the material can then be described by means of these internal variables,which appear in the expression of the modified stretch.In order to give a clearer explanation on the physical implication of the internal variables,a connection between the internal-variable theory and theoretical formulation based on the multiplicative decomposition of the deformation gradient in existing literature is presented in this paper,which allows the above internal-variable theory to be more systematic.展开更多
The continuous mediums are divided into two kinds according to their geometrical configurations,the first one is related to Euclidian manifolds and the other one to Riemannian manifolds/surfaces in the point of view o...The continuous mediums are divided into two kinds according to their geometrical configurations,the first one is related to Euclidian manifolds and the other one to Riemannian manifolds/surfaces in the point of view of the modern geometry.Two kinds of finite deformation theories with respect to Euclidian and Riemannian manifolds have been developed in the present paper.Both kinds of theories include the definitions of initial and current physical and parametric configurations,deformation gradient tensors with properties,deformation descriptions,transport theories and governing equations of nature conservation laws.The essential property of the theory with respect to Euclidian manifolds is that the curvilinear coordinates corresponding to the current physical configurations include time explicitly through which the geometrically irregular and time varying physical configurations can be mapped in the diffeomorphism manner to the regular and fixed domains in the parametric space.It is quite essential to the study of the relationships between geometries and mechanics.The theory with respect to Riemannian manifolds provides the systemic ideas and methods to study the deformations of continuous mediums whose geometrical configurations can be considered as general surfaces.The essential property of the theory with respect to Riemannian manifolds is that the thickness variation of a patch of continuous medium is represented by the surface density and its governing equation is rigorously deduced.As some applications,wakes of cylinders with deformable boundaries on the plane,incompressible wakes of a circular cylinder on fixed surfaces and axisymmetric finite deformations of an elastic membrane are numerically studied.展开更多
文摘This paper deals with the shape and influenced factors of surface non-continuous deformation due to mining. With finite element method, analysis are made to derive the relations between discontinuous deformation and mining affection, weak plane’s position & thickness, and mechanical property of weak-plane medium. The mutual affection of multiple weak-planes is also discussed. The results of the paper lay a foundation for constructing the calculation method of surface discontinuous deformation.
基金supported by the National Natural Science Foundation of China(Grant No. 30801163)
文摘The majority of foot deformities are related to arch collapse or instability,especially the longitudinal arch.Although the relationship between the plantar fascia and arch height has been previously investigated,the stress distribution remains unclear.The aim of this study was to explore the role of the plantar ligaments in foot arch biomechanics.We constructed a geometrical detailed three-dimensional (3-D) finite element (FE) model of the human foot and ankle from computer tomography images.The model comprised the majority of joints in the foot as well as bone segments,major ligaments,and plantar soft tissue.Release of the plantar fascia and other ligaments was simulated to evaluate the corresponding biomechanical effects on load distribution of the bony and ligamentous structures.These intrinsic ligaments of the foot arch were sectioned to simulate different pathologic situations of injury to the plantar ligaments,and to explore bone segment displacement and stress distribution.The validity of the 3-D FE model was verified by comparing results with experimentally measured data via the displacement and von Mise stress of each bone segment.Plantar fascia release decreased arch height,but did not cause total collapse of the foot arch.The longitudinal foot arch was lost when all the four major plantar ligaments were sectioned simultaneously.Plantar fascia release was compromised by increased strain applied to the plantar ligaments and intensified stress in the midfoot and metatarsal bones.Load redistribution among the centralized metatarsal bones and focal stress relief at the calcaneal insertion were predicted.The 3-D FE model indicated that plantar fascia release may provide relief of focal stress and associated heel pain.However,these operative procedures may pose a risk to arch stability and clinically may produce dorsolateral midfoot pain.The initial strategy for treating plantar fasciitis should be non-operative.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11132003,11172033,11272007 and 10932001)the National Basic Research Program of China (Grant No. 2010CB-7321004)
文摘Based on the non-equilibrium thermodynamics,an internal-variable theory in thermo-viscoelasticity at finite deformation was proposed by Huang in 1999.In this theory,a modified stretch of the molecular chain was introduced,and hence the molecular network model in rubber elasticity was extended to take into account the viscous and thermal effects of the material.The viscous dissipation of the material can then be described by means of these internal variables,which appear in the expression of the modified stretch.In order to give a clearer explanation on the physical implication of the internal variables,a connection between the internal-variable theory and theoretical formulation based on the multiplicative decomposition of the deformation gradient in existing literature is presented in this paper,which allows the above internal-variable theory to be more systematic.
基金supported by the National Nature Science Foundation of China (Grant Nos. 11172069 and 10872051)some key project of education reforms issued by the Shanghai Municipal Education Commission (2011)
文摘The continuous mediums are divided into two kinds according to their geometrical configurations,the first one is related to Euclidian manifolds and the other one to Riemannian manifolds/surfaces in the point of view of the modern geometry.Two kinds of finite deformation theories with respect to Euclidian and Riemannian manifolds have been developed in the present paper.Both kinds of theories include the definitions of initial and current physical and parametric configurations,deformation gradient tensors with properties,deformation descriptions,transport theories and governing equations of nature conservation laws.The essential property of the theory with respect to Euclidian manifolds is that the curvilinear coordinates corresponding to the current physical configurations include time explicitly through which the geometrically irregular and time varying physical configurations can be mapped in the diffeomorphism manner to the regular and fixed domains in the parametric space.It is quite essential to the study of the relationships between geometries and mechanics.The theory with respect to Riemannian manifolds provides the systemic ideas and methods to study the deformations of continuous mediums whose geometrical configurations can be considered as general surfaces.The essential property of the theory with respect to Riemannian manifolds is that the thickness variation of a patch of continuous medium is represented by the surface density and its governing equation is rigorously deduced.As some applications,wakes of cylinders with deformable boundaries on the plane,incompressible wakes of a circular cylinder on fixed surfaces and axisymmetric finite deformations of an elastic membrane are numerically studied.