The calculation of earth pressure is a difficult problem in the pit foundation design. Aiming at the problem, the earth pressure calculation formulas considering the displacement are proposed. A method for determining...The calculation of earth pressure is a difficult problem in the pit foundation design. Aiming at the problem, the earth pressure calculation formulas considering the displacement are proposed. A method for determining the limit displacement is given and it is convenient for use. The result indicates that the earth pressure calculated by the formulas is between the earth pressure at rest and the Rankine earth pressure, the formulas can reflect the change rules of active and passive earth pressures along with the displacement. Moreover, the calculation result using the formulas is approximate to the monitoring result. It confirms the validity of the formula deduction and the rationality of the calculation results. As for the passive earth pressure, the calculation method is theoretically feasible.展开更多
Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on com...Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on comparison between the theories. In this work, comparison between the theories with finite element analysis is done using the PLAXIS software. The comparative results show that in terms of distribution and magnitude of active earth pressure, RANKINE's theory possesses the highest match to the PLAXIS analysis. Parametric studies were also done to study the responses of active earth pressure distribution to varying parameters Increasing soil friction angle and wall friction causes decrease in active earth pressure. In contrast, active earth pressure increases with increasing soil unit weight and height of wall. RANK/NE's theory has the highest compatibility to finite element analysis among all theories, and utilization of this theory leads to proficient retaining wall design.展开更多
A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the li...A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the linear elastic model for the structure of the pile, while the Mohr-Coulomb model was used for representing the soil behavior surrounding the pile. The study includes cohesionless and cohesive soil to assess the lateral response of pile in the two types of soil. The whole geoteehnical model is suitable for problem of piles to determine the design quantities such as lateral deformation, lateral soil stress and its variation with time. The model is verified based on the results of published cases and there is good comparison between the results of published ease and the present simulation model. It is found that, the pile in cohesionless soil has more resistance in the rapid loading and less one in the long term loading. On the other hand, the pile in cohesive soil shows opposite behavior.展开更多
Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability an...Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability analyses indicate that 3D boundary effect varies with the stress level of the slope. When the slope is stable, end effect of 3D space is not remarkable. When the stability decreases, end effect occurs; when the slope is at limit state, end effect reaches maximum. The energy causing slope failure spreads preferentially along y-z section, and when the failure resistance capability reaches the limit state, the energy can extend along x-axis direction. The 3D effect of the slope under uniform load on the top is related to the ratio of load influence width to slope height, and the effect is remarkable with the decrease of the ratio.展开更多
基金Supported by the Natural Foundation of Jiangsu Province(BK2004427)~~
文摘The calculation of earth pressure is a difficult problem in the pit foundation design. Aiming at the problem, the earth pressure calculation formulas considering the displacement are proposed. A method for determining the limit displacement is given and it is convenient for use. The result indicates that the earth pressure calculated by the formulas is between the earth pressure at rest and the Rankine earth pressure, the formulas can reflect the change rules of active and passive earth pressures along with the displacement. Moreover, the calculation result using the formulas is approximate to the monitoring result. It confirms the validity of the formula deduction and the rationality of the calculation results. As for the passive earth pressure, the calculation method is theoretically feasible.
基金Project(RG086/10AET) supported by the Institute of Research Management and Monitoring,University of Malaya,Malaysia
文摘Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on comparison between the theories. In this work, comparison between the theories with finite element analysis is done using the PLAXIS software. The comparative results show that in terms of distribution and magnitude of active earth pressure, RANKINE's theory possesses the highest match to the PLAXIS analysis. Parametric studies were also done to study the responses of active earth pressure distribution to varying parameters Increasing soil friction angle and wall friction causes decrease in active earth pressure. In contrast, active earth pressure increases with increasing soil unit weight and height of wall. RANK/NE's theory has the highest compatibility to finite element analysis among all theories, and utilization of this theory leads to proficient retaining wall design.
文摘A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the linear elastic model for the structure of the pile, while the Mohr-Coulomb model was used for representing the soil behavior surrounding the pile. The study includes cohesionless and cohesive soil to assess the lateral response of pile in the two types of soil. The whole geoteehnical model is suitable for problem of piles to determine the design quantities such as lateral deformation, lateral soil stress and its variation with time. The model is verified based on the results of published cases and there is good comparison between the results of published ease and the present simulation model. It is found that, the pile in cohesionless soil has more resistance in the rapid loading and less one in the long term loading. On the other hand, the pile in cohesive soil shows opposite behavior.
文摘Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability analyses indicate that 3D boundary effect varies with the stress level of the slope. When the slope is stable, end effect of 3D space is not remarkable. When the stability decreases, end effect occurs; when the slope is at limit state, end effect reaches maximum. The energy causing slope failure spreads preferentially along y-z section, and when the failure resistance capability reaches the limit state, the energy can extend along x-axis direction. The 3D effect of the slope under uniform load on the top is related to the ratio of load influence width to slope height, and the effect is remarkable with the decrease of the ratio.