期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
挡墙前有限斜坡土体被动土压力研究 被引量:1
1
作者 赵其华 蒋峻峰 +2 位作者 郑涛 彭毅 王谊 《工程地质学报》 CSCD 北大核心 2022年第6期1882-1892,共11页
为探究挡墙前存在斜坡临空面条件下土体破坏与侧土压力特征,采用强度折减法研究了不同临坡距与嵌入深度下的挡墙前侧有限斜坡土体的破坏特征,并用水平层分析法与静力平衡法,推导了一种考虑斜坡坡度、临坡距及临空斜坡内土体层间剪切力... 为探究挡墙前存在斜坡临空面条件下土体破坏与侧土压力特征,采用强度折减法研究了不同临坡距与嵌入深度下的挡墙前侧有限斜坡土体的破坏特征,并用水平层分析法与静力平衡法,推导了一种考虑斜坡坡度、临坡距及临空斜坡内土体层间剪切力的被动土压力理论计算公式。通过与室内试验、数值模型及其他计算理论对比,建议方法同模型试验、数值解及其他理论计算结果基本吻合,证明了建议方法对计算有限斜坡条件下被动土压力的有效性,最后分析了斜坡坡度、临坡距对被动土压力与临空斜坡土层中层间剪力的影响。研究表明:平动模式下的有限斜坡土体破坏面主要沿墙底与斜坡坡脚附近破坏,这与半无限空间条件的破坏特征明显不同;斜坡条件下的被动土压力随深度呈指数增加规律,且随临坡距减小与坡度增大,被动土压力均出现了一定程度的减小,其中临坡距为0时,被动土压力相比半无限空间条件时降低幅度达到30%~50%;平动模式下的临空斜坡土体中的层间剪切系数为0.07~0.1;当墙背光滑且临坡距足够大时,建议方法可简化为理想条件的朗肯被动土压力公式。 展开更多
关键词 斜坡坡度 有限土坡 强度折减法 层间剪切应力 水平层分析法
下载PDF
Stability analysis of slope in strain-softening soils using local arc-length solution scheme 被引量:3
2
作者 WANG Xiang-rong RONG Qi-guo +1 位作者 SUN Shu-li WANG Hui 《Journal of Mountain Science》 SCIE CSCD 2017年第1期175-187,共13页
Soils with strain-softening behavior — manifesting as a reduction of strength with increasing plastic strain — are commonly found in the natural environment. For slopes in these soils,a progressive failure mechanism... Soils with strain-softening behavior — manifesting as a reduction of strength with increasing plastic strain — are commonly found in the natural environment. For slopes in these soils,a progressive failure mechanism can occur due to a reduction of strength with increasing strain. Finite element method based numerical approaches have been widely performed for simulating such failure mechanism,owning to their ability for tracing the formation and development of the localized shear strain. However,the reliability of the currently used approaches are often affected by poor convergence or significant mesh-dependency,and their applicability is limited by the use of complicated soil models. This paper aims to overcome these limitations by developing a finite element approach using a local arc-length controlled iterative algorithm as the solution strategy. In the proposed finite element approach,the soils are simulated with an elastoplastic constitutive model in conjunction with the Mohr-Coulomb yield function. The strain-softening behavior is represented by a piece-wise linearrelationship between the Mohr-Coulomb strength parameters and the deviatoric plastic strain. To assess the reliability of the proposed finite element approach,comparisons of the numerical solutions obtained by different finite element methods and meshes with various qualities are presented. Moreover,a landslide triggered by excavation in a real expressway construction project is analyzed by the presented finite element approach to demonstrate its applicability for practical engineering problems. 展开更多
关键词 Strain-softening Progressive failure Slope stability Local arc-length scheme Numerical simulation
下载PDF
Coupled Numerical Analysis of the Stability Behaviour of Unsaturated Soil Slopes Under Rainfall Conditions
3
作者 王成华 THOMAS H R 《Transactions of Tianjin University》 EI CAS 2003年第3期184-188,共5页
The stability behaviour of unsaturated soil slopes under rainfall conditions is investigated via a parametric finite element analysis, which is a fully coupled flow and deformation approach linked to a dynamic program... The stability behaviour of unsaturated soil slopes under rainfall conditions is investigated via a parametric finite element analysis, which is a fully coupled flow and deformation approach linked to a dynamic programming technique for determining the minimum factor of safety as well as its corresponding critical slip surface based on the stress fields from the numerical computation. The effects of rainfall features, soil strength parameters and permeability properties on slope stability are studied. The analyses revealed that the soil matric suction decreased during rainfall, especially in slopes with high permeability and/or with high suction angles of unsaturated soils. The influence of rainfall conditions on such slopes is quite obvious, and soil suction drops rapidly, which leads to a consequent quick reduction in the factor of safety. 展开更多
关键词 slope stability unsaturated soils matric suction RAINFALL finite elements factor of safety
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部