期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
球面的高次标准浸入及其有限型子流形
1
作者 吴炳烨 《杭州大学学报(自然科学版)》 CAS CSCD 1991年第3期239-246,共8页
本文首先引入了球面到高维欧氏空间的高次标准浸入,然后应用这种标准浸入研究球面的有限型子流形,得到了若干结果.
关键词 球面的高次标准浸入 有限型子流形
下载PDF
关于Veronese生成子流形的一点注记
2
作者 胡聪娥 《河南大学学报(自然科学版)》 CAS 1995年第4期23-25,共3页
本文把Veroncse生成子流形的极小猜想推广到一般的子流形,证明单位球面极小子流形的生成子流形在高维球面还是极小的.
关键词 球面 极小子流形 有限型子流形 Veronese曲面
下载PDF
沿有限型的粗糙核奇异积分算子在乘积空间上的外插估计(英文)
3
作者 蓝森华 张代清 《数学进展》 CSCD 北大核心 2016年第2期221-232,共12页
本文致力于研究乘积空间上沿有限型的奇异积分算子,通过Fourier变换及外插方法的讨论,证明了带径向球面粗糙核的奇异积分算子的L^p(R^n×R^m)有界性.
关键词 奇异积分算子 乘积空间 粗糙核 极大函数 有限型子流形
原文传递
Finite Type Non-Minimal Submanifolds
4
作者 宋鸿藻 吴报强 《Chinese Quarterly Journal of Mathematics》 CSCD 1992年第4期76-83,共8页
The notion of finite type submanifolds was introduced by B. Y. Chen. In this paper we consider the characteristics and the classifications of finite type non-minimal submanifolds. The characteristic theorems of 2-type... The notion of finite type submanifolds was introduced by B. Y. Chen. In this paper we consider the characteristics and the classifications of finite type non-minimal submanifolds. The characteristic theorems of 2-type Chen submanifolds,mass-symmetrie hypersurfaces and Dupin hypersurfaces in E_3~m are obtained. The classification theorems of 3-type hypersurfaces and null 2-type curves in E_3~m are also proved. 展开更多
关键词 Finite Type Submanifolds Minimal Submanifolds
下载PDF
A Conjecture on Veronese Generating Submanifolds
5
作者 SONGHong-zao SONGXiao-xin 《Chinese Quarterly Journal of Mathematics》 CSCD 2004年第1期63-66,共4页
In this paper,the higher dimensional conjecture on Veronese generating subman-ifolds proposed by Prof. SUN Zhen-zu is generalized to Pseudo-Euclidean Space L1(m+1), it is proved that in the higher dimentional Lorentz ... In this paper,the higher dimensional conjecture on Veronese generating subman-ifolds proposed by Prof. SUN Zhen-zu is generalized to Pseudo-Euclidean Space L1(m+1), it is proved that in the higher dimentional Lorentz Space L1(m+1), the generating submanifolds of an n dimentional submanifold of Pseudo-Riemannian unit sphere S1m is an n+1 dimentional minimal submanifold of S1(m+1) in L1(m+2) and is of 1-type in L1(m+2). 展开更多
关键词 finit type submanifolds minimal submanifolds Veronese generating submani folds
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部