In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two th...In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.展开更多
To investigate the diffusion reaction between Ti/Al solid diffusion couple, Ti/Al alternate foils formed by hot pressing were annealed at 525, 550, 575 and 600 °C for time ranging from 1 to 40 h. The experimental...To investigate the diffusion reaction between Ti/Al solid diffusion couple, Ti/Al alternate foils formed by hot pressing were annealed at 525, 550, 575 and 600 °C for time ranging from 1 to 40 h. The experimental results show that TiAl3 was the only observed phase at Ti/Al interface. The interface thermodynamics favored the preferential formation of TiAl3 in Ti/Al couple. The growth of TiAl3 layer occurred mainly towards Al foil side and exhibited a parabolic law. Using the interdiffusion coefficients calculated based on the contribution of grain boundary diffusion, the growth of TiAl3 was simulated numerically with the finite difference method, and the simulated results were in good agreement with the experimental ones.展开更多
In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid colu...In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius -27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is 〉30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(M- PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one do. The optimal parameter space for the maximum value of the linear frequency-shifted factor (a0) and the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to 〈1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.展开更多
We present a finite difference (FD) method for the simulation of seismic wave fields in fractured medium with an irregular (non-fiat) free surface which is beneficial for interpreting exploration data acquired in ...We present a finite difference (FD) method for the simulation of seismic wave fields in fractured medium with an irregular (non-fiat) free surface which is beneficial for interpreting exploration data acquired in mountainous regions. Fractures are introduced through the Coates-Schoenberg approach into the FD scheme which leads to local anisotropic properties of the media where fractures are embedded. To implement surface topography, we take advantage of the boundary-conforming grid and map a rectangular grid onto a curved one. We use a stable and explicit second-order accurate finite difference scheme to discretize the elastic wave equations (in a curvilinear coordinate system) in a 2D heterogeneous transversely isotropic medium with a horizontal axis of symmetry (HTI). Efficiency tests performed by different numerical experiments clearly illustrate the influence of an irregular free surface on seismic wave propagation in fractured media which may be significant to mountain seismic exploration. The tests also illustrate that the scattered waves induced by the tips of the fracture are re-scattered by the features of the free surface topography. The scattered waves provoked by the topography are re-scattered by the fractures, especially Rayleigh wave scattering whose amplitudes are much larger than others and making it very difficult to identify effective information from the fractures.展开更多
We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high...We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.展开更多
基金supported by project XJZ2023050044,A2309002 and XJZ2023070052.
文摘In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.
基金Project (50771041) supported by the National Natural Science Foundation of ChinaProject (05-0350) supported by the New Century Excellent Talents in University, China
文摘To investigate the diffusion reaction between Ti/Al solid diffusion couple, Ti/Al alternate foils formed by hot pressing were annealed at 525, 550, 575 and 600 °C for time ranging from 1 to 40 h. The experimental results show that TiAl3 was the only observed phase at Ti/Al interface. The interface thermodynamics favored the preferential formation of TiAl3 in Ti/Al couple. The growth of TiAl3 layer occurred mainly towards Al foil side and exhibited a parabolic law. Using the interdiffusion coefficients calculated based on the contribution of grain boundary diffusion, the growth of TiAl3 was simulated numerically with the finite difference method, and the simulated results were in good agreement with the experimental ones.
基金supported by NSFC(No.41174118)one of the major state S&T special projects(No.2008ZX05020-004)+1 种基金a Postdoctoral Fellowship of China(No.2013M530106)China Scholarship Council(No.2010644006)
文摘In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius -27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is 〉30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(M- PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one do. The optimal parameter space for the maximum value of the linear frequency-shifted factor (a0) and the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to 〈1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.
基金sponsored by the Knowledge Innovation Program of the Chinese Academy of Sciences No.KZCX2-YW-132)the Important National Science and Technology Specific Projects(No.2008ZX05008-006)the National Natural Science Foundation of China Nos.41074033,40721003,40830315,and 40874041)
文摘We present a finite difference (FD) method for the simulation of seismic wave fields in fractured medium with an irregular (non-fiat) free surface which is beneficial for interpreting exploration data acquired in mountainous regions. Fractures are introduced through the Coates-Schoenberg approach into the FD scheme which leads to local anisotropic properties of the media where fractures are embedded. To implement surface topography, we take advantage of the boundary-conforming grid and map a rectangular grid onto a curved one. We use a stable and explicit second-order accurate finite difference scheme to discretize the elastic wave equations (in a curvilinear coordinate system) in a 2D heterogeneous transversely isotropic medium with a horizontal axis of symmetry (HTI). Efficiency tests performed by different numerical experiments clearly illustrate the influence of an irregular free surface on seismic wave propagation in fractured media which may be significant to mountain seismic exploration. The tests also illustrate that the scattered waves induced by the tips of the fracture are re-scattered by the features of the free surface topography. The scattered waves provoked by the topography are re-scattered by the fractures, especially Rayleigh wave scattering whose amplitudes are much larger than others and making it very difficult to identify effective information from the fractures.
基金supported by the National Nature Science Foundation of China(Grant No.U1262208)the Important National Science & Technology Specific Projects(Grant No.2011ZX05019-008)
文摘We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.