In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two th...In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.展开更多
To investigate the diffusion reaction between Ti/Al solid diffusion couple, Ti/Al alternate foils formed by hot pressing were annealed at 525, 550, 575 and 600 °C for time ranging from 1 to 40 h. The experimental...To investigate the diffusion reaction between Ti/Al solid diffusion couple, Ti/Al alternate foils formed by hot pressing were annealed at 525, 550, 575 and 600 °C for time ranging from 1 to 40 h. The experimental results show that TiAl3 was the only observed phase at Ti/Al interface. The interface thermodynamics favored the preferential formation of TiAl3 in Ti/Al couple. The growth of TiAl3 layer occurred mainly towards Al foil side and exhibited a parabolic law. Using the interdiffusion coefficients calculated based on the contribution of grain boundary diffusion, the growth of TiAl3 was simulated numerically with the finite difference method, and the simulated results were in good agreement with the experimental ones.展开更多
In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid colu...In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius -27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is 〉30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(M- PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one do. The optimal parameter space for the maximum value of the linear frequency-shifted factor (a0) and the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to 〈1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.展开更多
We present a finite difference (FD) method for the simulation of seismic wave fields in fractured medium with an irregular (non-fiat) free surface which is beneficial for interpreting exploration data acquired in ...We present a finite difference (FD) method for the simulation of seismic wave fields in fractured medium with an irregular (non-fiat) free surface which is beneficial for interpreting exploration data acquired in mountainous regions. Fractures are introduced through the Coates-Schoenberg approach into the FD scheme which leads to local anisotropic properties of the media where fractures are embedded. To implement surface topography, we take advantage of the boundary-conforming grid and map a rectangular grid onto a curved one. We use a stable and explicit second-order accurate finite difference scheme to discretize the elastic wave equations (in a curvilinear coordinate system) in a 2D heterogeneous transversely isotropic medium with a horizontal axis of symmetry (HTI). Efficiency tests performed by different numerical experiments clearly illustrate the influence of an irregular free surface on seismic wave propagation in fractured media which may be significant to mountain seismic exploration. The tests also illustrate that the scattered waves induced by the tips of the fracture are re-scattered by the features of the free surface topography. The scattered waves provoked by the topography are re-scattered by the fractures, especially Rayleigh wave scattering whose amplitudes are much larger than others and making it very difficult to identify effective information from the fractures.展开更多
We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high...We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.展开更多
To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of ...To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of any-order derivatives derived from Taylor series expansion. Then, a finite-difference numerical modeling method with any evenorder accuracy is utilized to simulate seismic wave propagation in two-phase anisotropic media. Results indicate that modeling accuracy improves with the increase of difference accuracy order number. It is essential to find the optimal order number, grid size, and time step to balance modeling precision and computational complexity. Four kinds of waves, static mode in the source point, SV wave cusps, reflection and transmission waves are observed in two-phase anisotropic media through modeling.展开更多
Ultrasonic leaky Lamb waves are sensitive to defects and debonding in multilayer media. In this study, we use the finite-difference method to simulate the response of flexural waves in the presence of defects owing to...Ultrasonic leaky Lamb waves are sensitive to defects and debonding in multilayer media. In this study, we use the finite-difference method to simulate the response of flexural waves in the presence of defects owing to casing corrosion and rough fluctuations at the cement-formation interface. The ultrasonic obliquely incidence could effectively stimulate the flexural waves. The defects owing to casing corrosion change the amplitude of the early- arrival flexural wave, which gradually decrease with increasing defect thickness on the exterior walls and is the lowest when the defect length and wavelength were comparable. The scattering at the defects decreases the energy of flexural waves in the casing that leaks directly to fluids. For rough cement-formation interface, the early-arrival flexural waves do not change, whereas the late-arrival flexural waves have reduced amplitude owing to the scattering at rough interface.展开更多
The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient e...The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the full- space 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goal water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.展开更多
A coal seam is thin compared to the wavelength of seismic waves and usually shows strong anisotropy.It may form special geological formations,such as goafs and collapses,in coal mines.The existence of these formations...A coal seam is thin compared to the wavelength of seismic waves and usually shows strong anisotropy.It may form special geological formations,such as goafs and collapses,in coal mines.The existence of these formations may lead to instability in numerical simulations of the goaf area in a coal seam.The calculation speed of simulations is always a factor that restricts the development of simulation techniques.To improve the accuracy and effi ciency of seismic numerical simulations of goaf areas,an improved vacuum method has been incorporated into a rotated staggered grid scheme and calculations implemented by combining parallel computing and task parallelism.This ensures that the proposed numerical simulation method can be utilized in a geological model with large differences in elastic parameters among layers and improve the performance of a parallel application by enabling the full use of processor resources to expedite the calculations.We set up anisotropic coal seam models and then analyze numerically the characteristics of synthetic seismograms and snapshots of diff erent goaf areas with or without collapse.The results show that the proposed method can accurately simulate the goaf area and the calculation method can run with a high speed and parallel efficiency.The research will further advance the technology of anisotropic seismic exploration in coal fi elds,provide data for seismic inversion and build a theoretical support for coal mine disaster prediction.展开更多
The overcurrent (OC) protection limit is set usually accorging to a OC protection setting table on digital integrated protection equipment in mine explode isolation high voltage (HV) vacuum switch. For digital integra...The overcurrent (OC) protection limit is set usually accorging to a OC protection setting table on digital integrated protection equipment in mine explode isolation high voltage (HV) vacuum switch. For digital integrated protection equipment, OC protection setting table must be converted to be a microcomputer algorithm. This paper first intro-duced a method of the fitting OC protection setting table to be OC relay inverse time characteristics equations using MATLAB least square fitting. On the basis of analyzing these fitting equations, a notion, “integral limit rate” was put forward initially and a OC in-verse time digital algorithm was developed. MATLAB simulation results and a digital signal processor (DSP) based digital integrated protection equipment running test indicate that this algorithm has less calculation amount, less taking up memory, high control accuracy, implements the no-grade setting of OC delay values, suits for all kinds of low-middle mi-crocomputer system implementation.展开更多
The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating s...The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage.The deepness of groove and the cell gap affect the distribution of director.For the relatively shallow groove and the relatively thick cell gap,the director is only dependent on the coordinate z.For the relatively deep groove and the relatively thin cell gap,the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface.展开更多
基金supported by project XJZ2023050044,A2309002 and XJZ2023070052.
文摘In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.
基金Project (50771041) supported by the National Natural Science Foundation of ChinaProject (05-0350) supported by the New Century Excellent Talents in University, China
文摘To investigate the diffusion reaction between Ti/Al solid diffusion couple, Ti/Al alternate foils formed by hot pressing were annealed at 525, 550, 575 and 600 °C for time ranging from 1 to 40 h. The experimental results show that TiAl3 was the only observed phase at Ti/Al interface. The interface thermodynamics favored the preferential formation of TiAl3 in Ti/Al couple. The growth of TiAl3 layer occurred mainly towards Al foil side and exhibited a parabolic law. Using the interdiffusion coefficients calculated based on the contribution of grain boundary diffusion, the growth of TiAl3 was simulated numerically with the finite difference method, and the simulated results were in good agreement with the experimental ones.
基金supported by NSFC(No.41174118)one of the major state S&T special projects(No.2008ZX05020-004)+1 种基金a Postdoctoral Fellowship of China(No.2013M530106)China Scholarship Council(No.2010644006)
文摘In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius -27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is 〉30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(M- PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one do. The optimal parameter space for the maximum value of the linear frequency-shifted factor (a0) and the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to 〈1% using the optimal PML parameters, and the error will decrease as the PML thickness increases.
基金sponsored by the Knowledge Innovation Program of the Chinese Academy of Sciences No.KZCX2-YW-132)the Important National Science and Technology Specific Projects(No.2008ZX05008-006)the National Natural Science Foundation of China Nos.41074033,40721003,40830315,and 40874041)
文摘We present a finite difference (FD) method for the simulation of seismic wave fields in fractured medium with an irregular (non-fiat) free surface which is beneficial for interpreting exploration data acquired in mountainous regions. Fractures are introduced through the Coates-Schoenberg approach into the FD scheme which leads to local anisotropic properties of the media where fractures are embedded. To implement surface topography, we take advantage of the boundary-conforming grid and map a rectangular grid onto a curved one. We use a stable and explicit second-order accurate finite difference scheme to discretize the elastic wave equations (in a curvilinear coordinate system) in a 2D heterogeneous transversely isotropic medium with a horizontal axis of symmetry (HTI). Efficiency tests performed by different numerical experiments clearly illustrate the influence of an irregular free surface on seismic wave propagation in fractured media which may be significant to mountain seismic exploration. The tests also illustrate that the scattered waves induced by the tips of the fracture are re-scattered by the features of the free surface topography. The scattered waves provoked by the topography are re-scattered by the fractures, especially Rayleigh wave scattering whose amplitudes are much larger than others and making it very difficult to identify effective information from the fractures.
基金supported by the National Nature Science Foundation of China(Grant No.U1262208)the Important National Science & Technology Specific Projects(Grant No.2011ZX05019-008)
文摘We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.
文摘To improve the accuracy of the conventional finite-difference method, finitedifference numerical modeling methods of any even-order accuracy are recommended. We introduce any even-order accuracy difference schemes of any-order derivatives derived from Taylor series expansion. Then, a finite-difference numerical modeling method with any evenorder accuracy is utilized to simulate seismic wave propagation in two-phase anisotropic media. Results indicate that modeling accuracy improves with the increase of difference accuracy order number. It is essential to find the optimal order number, grid size, and time step to balance modeling precision and computational complexity. Four kinds of waves, static mode in the source point, SV wave cusps, reflection and transmission waves are observed in two-phase anisotropic media through modeling.
基金supported by the Research and Development of Key Instruments and Technologies for Deep Resources Prospecting(No.ZDYZ2012-1-07)the National Natural Science Foundation of China(Nos.41204099,11134011,and 11274341)
文摘Ultrasonic leaky Lamb waves are sensitive to defects and debonding in multilayer media. In this study, we use the finite-difference method to simulate the response of flexural waves in the presence of defects owing to casing corrosion and rough fluctuations at the cement-formation interface. The ultrasonic obliquely incidence could effectively stimulate the flexural waves. The defects owing to casing corrosion change the amplitude of the early- arrival flexural wave, which gradually decrease with increasing defect thickness on the exterior walls and is the lowest when the defect length and wavelength were comparable. The scattering at the defects decreases the energy of flexural waves in the casing that leaks directly to fluids. For rough cement-formation interface, the early-arrival flexural waves do not change, whereas the late-arrival flexural waves have reduced amplitude owing to the scattering at rough interface.
基金supported by the National Key Scientific Instrument and Equipment Development Project(No.2011YQ03013307)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsKey Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Land and Resources
文摘The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the full- space 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goal water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.
基金This work was supported by the National Natural Science Foundation of China(Nos.41304105 and 41674135)the Natural Science Foundation of Shaanxi province(No.2016JM4010).
文摘A coal seam is thin compared to the wavelength of seismic waves and usually shows strong anisotropy.It may form special geological formations,such as goafs and collapses,in coal mines.The existence of these formations may lead to instability in numerical simulations of the goaf area in a coal seam.The calculation speed of simulations is always a factor that restricts the development of simulation techniques.To improve the accuracy and effi ciency of seismic numerical simulations of goaf areas,an improved vacuum method has been incorporated into a rotated staggered grid scheme and calculations implemented by combining parallel computing and task parallelism.This ensures that the proposed numerical simulation method can be utilized in a geological model with large differences in elastic parameters among layers and improve the performance of a parallel application by enabling the full use of processor resources to expedite the calculations.We set up anisotropic coal seam models and then analyze numerically the characteristics of synthetic seismograms and snapshots of diff erent goaf areas with or without collapse.The results show that the proposed method can accurately simulate the goaf area and the calculation method can run with a high speed and parallel efficiency.The research will further advance the technology of anisotropic seismic exploration in coal fi elds,provide data for seismic inversion and build a theoretical support for coal mine disaster prediction.
文摘The overcurrent (OC) protection limit is set usually accorging to a OC protection setting table on digital integrated protection equipment in mine explode isolation high voltage (HV) vacuum switch. For digital integrated protection equipment, OC protection setting table must be converted to be a microcomputer algorithm. This paper first intro-duced a method of the fitting OC protection setting table to be OC relay inverse time characteristics equations using MATLAB least square fitting. On the basis of analyzing these fitting equations, a notion, “integral limit rate” was put forward initially and a OC in-verse time digital algorithm was developed. MATLAB simulation results and a digital signal processor (DSP) based digital integrated protection equipment running test indicate that this algorithm has less calculation amount, less taking up memory, high control accuracy, implements the no-grade setting of OC delay values, suits for all kinds of low-middle mi-crocomputer system implementation.
基金Supported by Natural Science Foundation of Hebei Province under Grant No.A2010000004the National Natural Science Foundation of China under Grant Nos.10704022 and 60736042the Key Subject Construction Project of Hebei Province University
文摘The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage.The deepness of groove and the cell gap affect the distribution of director.For the relatively shallow groove and the relatively thick cell gap,the director is only dependent on the coordinate z.For the relatively deep groove and the relatively thin cell gap,the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface.