期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于双闭环控制的无刷电机控制系统设计
1
作者 徐仕强 张宁 徐熙平 《长春理工大学学报(自然科学版)》 2024年第3期62-69,共8页
无刷电机被广泛应用于农业、医疗、教育等场景,具有高速、寿命长等优势,但在高速环境以及电压采样中相电流与相电压产生的相位差存在精度低、力矩输出不精确等问题。针对上述问题,设计了一种高频的三相电流控制硬件,提出了PI/PD控制结... 无刷电机被广泛应用于农业、医疗、教育等场景,具有高速、寿命长等优势,但在高速环境以及电压采样中相电流与相电压产生的相位差存在精度低、力矩输出不精确等问题。针对上述问题,设计了一种高频的三相电流控制硬件,提出了PI/PD控制结合的方式,构造了PI/PD双闭环反馈控制系统。通过有限差分时间法对系统进行仿真,证明PI/PD可以达到目标的99.91%,并较其他控制方式上均有更好的系统响应以及稳定性能。在硬件测试中,2 500 r/min以内可以在3 s达到目标状态,且绝对误差在3 r/min以内,证明系统具有优异的控制精度、速度以及鲁棒性。 展开更多
关键词 无刷电机 控制系统 有限差分时间法 建模与仿真
下载PDF
Numerical Computation of Hard Excitation in an Autocatalytic Biochemical System
2
作者 Faisal Nasser Mohammed AI-Showaikh 《Journal of Mathematics and System Science》 2012年第7期454-463,共10页
An autocatalytic biochemical system in the presence of recycling enzyme is solved numerically using two numerical methods based on finite difference schemes. The first method is the well known Euler method which is an... An autocatalytic biochemical system in the presence of recycling enzyme is solved numerically using two numerical methods based on finite difference schemes. The first method is the well known Euler method which is an explicit method, whereas the second method is implicit. Although the implicit method, method 2, is first-order accurate in time it converges to the fixed point(s) for large time step, L Numerical results show the existence of hard excitation and birhythmicity. 展开更多
关键词 Autocatalytic biochemical system recycling enzyme implicit method finite-difference method hard excitation birhythmicity.
下载PDF
An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation 被引量:7
3
作者 LI Xiao QIAO ZhongHua ZHANG Hui 《Science China Mathematics》 SCIE CSCD 2016年第9期1815-1834,共20页
In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the n... In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term. 展开更多
关键词 Cahn-Hilliard equation stochastic term energy stability convex splitting adaptive time stepping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部