Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a...Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.展开更多
Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in th...Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in the complex geological structures found in seismic exploration of the mountainous area in Northwestern China. More powerful techniques of seismic modeling are demanded for this purpose. In this paper, two methods of finite element-finite difference method (FE-FDM) and arbitrary difference precise integration (ADPI) for seismic forward modeling have been developed and implemented to understand the behavior of seismic waves in complex geological subsurface structures and reservoirs. Two case studies show that the FE-FDM and ADPI techniques are well suited to modeling seismic wave propagation in complex geology.展开更多
We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation ...We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation of seismic waves in gas hydrate-bearing sediments beneath the seafloor, and obtained the common receiver gathers of compressional waves(P-waves) and shear waves(S-waves). The numerical results suggest that the interface between sediments containing gas hydrates and free gas produces a large-amplitude bottomsimulating reflector. The analysis of multicomponent common receiver data suggests that ocean-bottom seismometers receive the converted waves of upgoing P- and S-waves, which increases the complexity of the wavefield record.展开更多
To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondar...To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.展开更多
The Z-Axis tiPPer eiectromagnetic (ZTEM) technique is based on a frequency-domain airbome electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the M...The Z-Axis tiPPer eiectromagnetic (ZTEM) technique is based on a frequency-domain airbome electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the Maxwell's equations, and the magnetic components at the center of each edge of the grid cell are evaluated by applying the staggered-grid finite-difference method. The tipper and its divergence are derived to complete the 3D ZTEM forward modeling algorithm. A synthetic model is then used to compare the responses with those of 2D finite-element forward modeling to verify the accuracy of the algorithm. ZTEM offers high horizontal resolution to both simple and complex distributions of conductivity. This work is the theoretical foundation for the interpretation of ZTEM data and the study of 3D ZTEM inversion.展开更多
Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time st...Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.展开更多
基金supported by the National Natural Science Foundation of China(No.41474110)Shell Ph.D. Scholarship to support excellence in geophysical research
文摘Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods.
基金supported by the Natural Science Foundation of China(Grant No.40574050,40821062)the National Basic Research Program of China(Grant No.2007CB209602)the Key Research Program of China National Petroleum Corporation(Grant No.06A10101)
文摘Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in the complex geological structures found in seismic exploration of the mountainous area in Northwestern China. More powerful techniques of seismic modeling are demanded for this purpose. In this paper, two methods of finite element-finite difference method (FE-FDM) and arbitrary difference precise integration (ADPI) for seismic forward modeling have been developed and implemented to understand the behavior of seismic waves in complex geological subsurface structures and reservoirs. Two case studies show that the FE-FDM and ADPI techniques are well suited to modeling seismic wave propagation in complex geology.
基金supported by the National Natural Science Foundation of China(No.41174087,41204089)the National Oil and Gas Major Project(No.2011ZX05005-005)
文摘We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation of seismic waves in gas hydrate-bearing sediments beneath the seafloor, and obtained the common receiver gathers of compressional waves(P-waves) and shear waves(S-waves). The numerical results suggest that the interface between sediments containing gas hydrates and free gas produces a large-amplitude bottomsimulating reflector. The analysis of multicomponent common receiver data suggests that ocean-bottom seismometers receive the converted waves of upgoing P- and S-waves, which increases the complexity of the wavefield record.
基金supported by the Natural Science Foundation of China(Nos.41404057,41674077 and 411640034)the Nuclear Energy Development Project of China,and the‘555’Project of Gan Po Excellent People
文摘To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.
基金supported by the Natural Science Foundation of China(No.41374078)Geological Survey Projects of Ministry of Land and Resources of China(No.12120113086100 and 12120113101300)
文摘The Z-Axis tiPPer eiectromagnetic (ZTEM) technique is based on a frequency-domain airbome electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the Maxwell's equations, and the magnetic components at the center of each edge of the grid cell are evaluated by applying the staggered-grid finite-difference method. The tipper and its divergence are derived to complete the 3D ZTEM forward modeling algorithm. A synthetic model is then used to compare the responses with those of 2D finite-element forward modeling to verify the accuracy of the algorithm. ZTEM offers high horizontal resolution to both simple and complex distributions of conductivity. This work is the theoretical foundation for the interpretation of ZTEM data and the study of 3D ZTEM inversion.
基金supported by National Natural Science Foundation of China(41504109,41404099)the Natural Science Foundation of Shandong Province(BS2015HZ008)the project of "Distinguished Professor of Jiangsu Province"
文摘Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.