A simple and intuitive manner for solving fluid-structure interaction problem has been developed using Microsoft Excel spreadsheets. By eliminating the need of previous knowledge of any programming language, the metho...A simple and intuitive manner for solving fluid-structure interaction problem has been developed using Microsoft Excel spreadsheets. By eliminating the need of previous knowledge of any programming language, the method appears as an interesting introduction to numerical solutions of partial differential equations, due to the direct and didactic way that it is developed. Proposed procedure enables the analysis of tridimensional geometries using the finite difference method and can be extended to other differential equations or boundary conditions. The author's objective in this paper is to develop a simple and reliable preliminary method for solving acoustic fluid-structure interaction problems with application to dam-reservoir interaction phenomena and also contribute in the educational growth for undergraduate students that are beginning research in such matter.展开更多
A high order finite difference-spectral method is derived for solving space fractional diffusion equations,by combining the second order finite difference method in time and the spectral Galerkin method in space.The s...A high order finite difference-spectral method is derived for solving space fractional diffusion equations,by combining the second order finite difference method in time and the spectral Galerkin method in space.The stability and error estimates of the temporal semidiscrete scheme are rigorously discussed,and the convergence order of the proposed method is proved to be O(τ2+Nα-m)in L2-norm,whereτ,N,αand m are the time step size,polynomial degree,fractional derivative index and regularity of the exact solution,respectively.Numerical experiments are carried out to demonstrate the theoretical analysis.展开更多
In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the n...In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term.展开更多
文摘A simple and intuitive manner for solving fluid-structure interaction problem has been developed using Microsoft Excel spreadsheets. By eliminating the need of previous knowledge of any programming language, the method appears as an interesting introduction to numerical solutions of partial differential equations, due to the direct and didactic way that it is developed. Proposed procedure enables the analysis of tridimensional geometries using the finite difference method and can be extended to other differential equations or boundary conditions. The author's objective in this paper is to develop a simple and reliable preliminary method for solving acoustic fluid-structure interaction problems with application to dam-reservoir interaction phenomena and also contribute in the educational growth for undergraduate students that are beginning research in such matter.
基金supported by National Center for Mathematics and Interdisciplinary Sciences,CASNational Natural Science Foundation of China (Grant Nos. 60931002 and 91130019)
文摘A high order finite difference-spectral method is derived for solving space fractional diffusion equations,by combining the second order finite difference method in time and the spectral Galerkin method in space.The stability and error estimates of the temporal semidiscrete scheme are rigorously discussed,and the convergence order of the proposed method is proved to be O(τ2+Nα-m)in L2-norm,whereτ,N,αand m are the time step size,polynomial degree,fractional derivative index and regularity of the exact solution,respectively.Numerical experiments are carried out to demonstrate the theoretical analysis.
基金supported by the Hong Kong General Research Fund (Grant Nos. 202112, 15302214 and 509213)National Natural Science Foundation of China/Research Grants Council Joint Research Scheme (Grant Nos. N HKBU204/12 and 11261160486)+1 种基金National Natural Science Foundation of China (Grant No. 11471046)the Ministry of Education Program for New Century Excellent Talents Project (Grant No. NCET-12-0053)
文摘In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term.