期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
挑流冲坑紊流场的二维数值模拟 被引量:5
1
作者 杨学军 李玉柱 《水利水电技术》 CSCD 北大核心 2002年第2期22-25,共4页
利用代数应力模型对淹没冲击射流作用下的冲刷坑内紊流场结构进行了二维数值模拟.计算中采用贴体正交网格变换处理不规则的冲坑几何边界,用VOF方法处理自由水面条件对水流结构的影响.结果分析表明,采用的数值方法可行,计算结果合理,在... 利用代数应力模型对淹没冲击射流作用下的冲刷坑内紊流场结构进行了二维数值模拟.计算中采用贴体正交网格变换处理不规则的冲坑几何边界,用VOF方法处理自由水面条件对水流结构的影响.结果分析表明,采用的数值方法可行,计算结果合理,在此基础上,可进一步研究冲坑的消能机理和冲坑的动态发展过程. 展开更多
关键词 代数应力模型 贴体正交网格 数值模拟 抗流冲坑紊流场 有限差分网络 流速矢量 挑流消能 高坝 泄流消能
下载PDF
A Hybrid Method for Electromagnetic Coupling in Large Spaces
2
作者 王加莹 高本庆 《Journal of Beijing Institute of Technology》 EI CAS 1997年第4期9-16,共8页
A hybrid method combining finite difference time domain(FDTD)with topology network was presented to treat with electromagnetic couplings and transmissions in large spaces A generalized matrix euqation expressing th... A hybrid method combining finite difference time domain(FDTD)with topology network was presented to treat with electromagnetic couplings and transmissions in large spaces A generalized matrix euqation expressing the relations among wave vectors at every port of the network nodes was give Scattering characteristics and electromagnetic distributions of every node was calculated independently using FDTD A structure of irises in a waveguide was taken as numerical examples This hybrid method has more advantages than the traditional FDTD method which includes saving calculation time,saving memory spaces and being flexible in setting up FDTD grids 展开更多
关键词 finite difference time domain(FDTD) topology network electromagnetic coupling
下载PDF
TRUNCATION ERROR REDUCTION METHOD FOR PLANAR CAVITY FLOW
3
作者 夏健 刘超群 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期119-123,共5页
A new so called truncation error reduction method (TERM) is developed in this work. This is an iterative process which uses a coarse grid (2 h ) to estimate the truncation error and then reduces the error on the or... A new so called truncation error reduction method (TERM) is developed in this work. This is an iterative process which uses a coarse grid (2 h ) to estimate the truncation error and then reduces the error on the original grid ( h ). The purpose is to use coarse grids to get more accurate results and to develop a new method which could do coarse grid direct numerical simulation (DNS) for more accurate and acceptable DNS solutions. 展开更多
关键词 truncation error finite difference MULTIGRID
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部