A hybrid method combining finite difference time domain(FDTD)with topology network was presented to treat with electromagnetic couplings and transmissions in large spaces A generalized matrix euqation expressing th...A hybrid method combining finite difference time domain(FDTD)with topology network was presented to treat with electromagnetic couplings and transmissions in large spaces A generalized matrix euqation expressing the relations among wave vectors at every port of the network nodes was give Scattering characteristics and electromagnetic distributions of every node was calculated independently using FDTD A structure of irises in a waveguide was taken as numerical examples This hybrid method has more advantages than the traditional FDTD method which includes saving calculation time,saving memory spaces and being flexible in setting up FDTD grids展开更多
A new so called truncation error reduction method (TERM) is developed in this work. This is an iterative process which uses a coarse grid (2 h ) to estimate the truncation error and then reduces the error on the or...A new so called truncation error reduction method (TERM) is developed in this work. This is an iterative process which uses a coarse grid (2 h ) to estimate the truncation error and then reduces the error on the original grid ( h ). The purpose is to use coarse grids to get more accurate results and to develop a new method which could do coarse grid direct numerical simulation (DNS) for more accurate and acceptable DNS solutions.展开更多
文摘A hybrid method combining finite difference time domain(FDTD)with topology network was presented to treat with electromagnetic couplings and transmissions in large spaces A generalized matrix euqation expressing the relations among wave vectors at every port of the network nodes was give Scattering characteristics and electromagnetic distributions of every node was calculated independently using FDTD A structure of irises in a waveguide was taken as numerical examples This hybrid method has more advantages than the traditional FDTD method which includes saving calculation time,saving memory spaces and being flexible in setting up FDTD grids
文摘A new so called truncation error reduction method (TERM) is developed in this work. This is an iterative process which uses a coarse grid (2 h ) to estimate the truncation error and then reduces the error on the original grid ( h ). The purpose is to use coarse grids to get more accurate results and to develop a new method which could do coarse grid direct numerical simulation (DNS) for more accurate and acceptable DNS solutions.