期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向有限带宽信道的字典学习图像超分辨率重建
1
作者 左登 符冉迪 +1 位作者 周颖 纪念 《宁波大学学报(理工版)》 CAS 2018年第3期7-13,共7页
固定邻域回归(ANR)算法采用K层奇异值分解(K-SVD)算法进行字典训练,在字典学习过程中存在稀疏表示系数不准确的问题,导致重建的结果不理想.因此,引入一种改进的K-SVD算法对字典进行训练,该算法对字典训练改变了传统K-SVD算法更新稀疏表... 固定邻域回归(ANR)算法采用K层奇异值分解(K-SVD)算法进行字典训练,在字典学习过程中存在稀疏表示系数不准确的问题,导致重建的结果不理想.因此,引入一种改进的K-SVD算法对字典进行训练,该算法对字典训练改变了传统K-SVD算法更新稀疏表示系数的方式,使得稀疏表示系数更加准确,而且加快了字典的收敛速度,使得训练得到的字典具有更好的稀疏表达能力.同时,针对ANR算法的不足,提出一种面向有限带宽信道基于字典学习的图像超分辨率方法,该方法采用改进的K-SVD算法训练字典对{Φ_h,Φ_1},并将其应用到ANR算法中,实现图像的超分辨率重建.实验结果表明,本文提出的方法不仅能够保持ANR算法快速重建的优势,而且提高了图像的重建质量,具有更高的峰值信噪比和结构相似度. 展开更多
关键词 有限带宽信道 字典学习 稀疏表示 超分辨率
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部