Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with ...Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.展开更多
Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the st...Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the structure, while the strength reduction method relies on the arbitrary decision on the failure criteria. The dynamic limit equilibrium solution was proposed for the stability analysis of sliding block based on 3-D multi-grid method, by incorporating implicit stepping integration FEM. There are two independent meshes created in the analysis: One original 3-D FEM mesh is for the simulation of target structure and provides the stress time-history, while the other surface grid is for the simulation of sliding surface and could be selected and designed freely. As long as the stress time-history of the geotechnical structure under earthquake scenario is obtained based on 3-D nonlinear dynamic FEM analysis, the time-history of the force on sliding surface could be derived by projecting the stress time-history from 3-D FEM mesh to surface grid. After that, the safety factor time-history of the sliding block will be determined through applying limit equilibrium method. With those information in place, the structure's aseismatic stability ean be further studied. The above theory and method were also applied to the aseismatic stability analysis of Dagangshan arch dam's right bank high slope and compared with the the result generated by Quasi-static method. The comparative analysis reveals that the method not only raises the FEM's capability in accurate simulation of complicated geologic structure, but also increases the flexibility and comprehensiveness of limit equilibrium method. This method is reliable and recommended for further application in other real geotechnical engineering.展开更多
The aim of this work is to propose a 3D FE model of a theoretical assembling straight bevel gear pair to analyze the contact fatigue on the tooth surface and the bending fatigue in the tooth root. Based on the cumulat...The aim of this work is to propose a 3D FE model of a theoretical assembling straight bevel gear pair to analyze the contact fatigue on the tooth surface and the bending fatigue in the tooth root. Based on the cumulative fatigue criterion and the stress-life equation, the key meshing states of the gear pair were investigated for the contact fatigue and the bending fatigue. Then, the reliability of the proposed model was proved by comparing the calculation result with the simulation result. Further study was performed to analyze the variation of the contact fatigue stress and the bending fatigue stress under different loads. Furthermore, the roles of the driving pinion and the driven gear pair were evaluated in the fatigue life of the straight bevel gear pair and the main fatigue failure mode was determined for the significant gear. The results show that the fatigue failure of the driving pinion is the main fatigue failure for the straight bevel gear pair and the bending fatigue failure is the main fatigue failure for the driving pinion.展开更多
A nonconforming rectangular finite element is presented, which satisfies the discrete B-B condition for the Stokes problem. And the element has two order convergence rate for the velocity and pressure.
We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. ...We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. The present paper has six sections. A review of previous work on interactions between waves and ocean structures is presented in Section one. Section two gives the mathematical formulation. In Section three, the finite element discretization, mesh generation and the finite element linear system solution methods are described. Section four presents numerical methods including time marching schemes, computation of velocity, remeshing and smoothing techniques and numerical radiation conditions. The application of the FEM to the wave-structure interactions are presented in Section five followed by the concluding remarks in Section six.展开更多
The advantage of built-up sleeved backup roll was described. Based on the stress distribution analysis and simulation for the built-up sleeved backup roll by using finite element method, the effects of roll sleeve thi...The advantage of built-up sleeved backup roll was described. Based on the stress distribution analysis and simulation for the built-up sleeved backup roll by using finite element method, the effects of roll sleeve thickness and shrink range on the stress-strain field were studied. Finally, based on the methodology and strategy of the fatigue analysis, fatigue life of backup roll was estimated by using the stress-strain data obtained through finite element simulation. The results show that roll sleeve thickness and shrink range have a great influence on sleeve stress distribution of built-up sleeved roll. Under the circumstance of ensuring transferring enough torque, the shrink range should be kept small. However, thicker roll sleeve has longer roll service life when the shrink range is constant.展开更多
In order to enable a wind tunnel support to have a high enough natural frequency to prevent experiencing mechanical resonance and excessive vibration displacement, five kinds of wind tunnel support structures have bee...In order to enable a wind tunnel support to have a high enough natural frequency to prevent experiencing mechanical resonance and excessive vibration displacement, five kinds of wind tunnel support structures have been simulated and analyzed individually under five different load conditions by means of a nonlinear finite element numerical method. With natural frequency and three directions vibration displacement given, simulation and analyses indicated that additional supports is more beneficial than heightening the rigidity of steel reinforced concrete in support pillars and adopting steel wrappers on the pillars to increase natural frequency of support structure. Increasing the rigidity of steel reinforced concrete, adopting steel wrappers and providing additional supports are all helpful in reducing three directions vibration Max displacement. and additional supports are comparatively more effective. Therefore, a structure scheme with steel reinforced concrete support pillars, steel wrappers and additional supports should be adopted in practical wind tunnel support construction.展开更多
At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in r...At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in recent years,while there are lots of defects. This paper first identifies the location of failure surface and safety factor through the finite element program of PLAXIS and then analyses the influencing factors of the stability of reinforced earth retaining wall with geogrid. The authors adopt strength reduction FEM (finite element method)in the design and stability analysis of reinforced earth retaining wall and have achieved some satisfying results. Without any assumptions,the new design method can automatically judge the failure mode of reinforced earth retaining wall,consider the influence of axial tensile stiffness of the reinforcement stripe on the stability of retaining wall,identify reasonable distance and length of the reinforcement stripe,and choose suitable parameters of reinforcement stripe,including strength,stiffness and pseudo-friction coefficient which makes the design optimal. It is proved through the calculation examples that this method is more reasonable,reliable and economical in the design of reinforced earth retaining wall.展开更多
Brazing has a wide acceptance in industries and its simplicity in variety of application attracts more and more patronage. The strength of brazing joint determines the reliability of brazed engineering components. So ...Brazing has a wide acceptance in industries and its simplicity in variety of application attracts more and more patronage. The strength of brazing joint determines the reliability of brazed engineering components. So the need to ascertain the reliability or to predict its failure (without some destructive testing) becomes high even with a computer aided analysis using the Finite Element Analysis. Here, we have employed the services of FEA software, Abaqus CAE, as a tool for the computer calculation to investigate a joint case of cemented carbide brazed with silver-based filler metal. In this paper, 2D analysis has been adopted because the thickness of the material (in 2D) does not influence the final calculation results. We have applied constant loading and constant boundary condition to explore data from the elastic and plastic strain analysis through which we were able to predict the maximum joint strength with respect to the joint thickness. The pattern of the meshing was also significant. And the result could be transferable to a real-life field situation. The final results showed that there is an optimum thickness of the filler metal with the maximum strength which matches that obtained from experiment.展开更多
In the research field of ground water, hydraulic gradient is studied for decades. In the consolidation field, hydraulic gradient is yet to be investigated as an important hydraulic variable. So, the variation of hydra...In the research field of ground water, hydraulic gradient is studied for decades. In the consolidation field, hydraulic gradient is yet to be investigated as an important hydraulic variable. So, the variation of hydraulic gradient in nonlinear finite strain consolidation was focused on in this work. Based on lab tests, the nonlinear compressibility and nonlinear permeability of Ningbo soft clay were obtained. Then, a strongly nonlinear governing equation was derived and it was solved with the finite element method.Afterwards, the numerical analysis was performed and it was verified with the existing experiment for Hong Kong marine clay. It can be found that the variation of hydraulic gradient is closely related to the magnitude of external load and the depth in soils. It is interesting that the absolute value of hydraulic gradient(AVHG) increases rapidly first and then decreases gradually after reaching the maximum at different depths of soils. Furthermore, the changing curves of AVHG can be roughly divided into five phases. This five-phase model can be employed to study the migration of pore water during consolidation.展开更多
Objective To investigate the changes of hipbone biomechanics after the resection of ischiopubic tumors and their relationships with the complications in the convalescent stage, and directing the postoperative pelvic r...Objective To investigate the changes of hipbone biomechanics after the resection of ischiopubic tumors and their relationships with the complications in the convalescent stage, and directing the postoperative pelvic reconstruction. Methods DICOM data were used to create an intact hipbone finite element model and postoperative model. The biomechanical indices on the same region in the two models under the same boundary condition were compared. The differences of displacement, stress, and strain of the two models were analyzed with statistical methods. Results The distribution areas of the hipbone nodes' displacement, stress, and strain were similar before and after the simulated operation. The sacroiliac joint nodes' displacement (P=0.040) and strain (P=0.000), and the acetabular roof nodes' stress (P=0.000) and strain (P=0.005) of two models had significant differences, respectively. But the sacroiliac joint nodes' stress (P=0.076) and the greater sciatic notch nodes' stress (P=0.825) and strain (P=0.506) did not have significant differences. Conclusions The resection of ischiopubic tumors mainly affect the biomechanical states of the homolateral sacroiliac joint and acetabular roof. The complications in the convalescent stage are due to the biomechanical changes of the sacroiliac joint and the acetabular roof and disappearances of the stabilization and connection functions of the pubic symphysis and superior ramus of pubis.展开更多
The effective stress method is developed to predict the axial capacity of piles in clay. The effective stress state changes due to the resulting pore pressure change and therefore, the strength and stiffness of the so...The effective stress method is developed to predict the axial capacity of piles in clay. The effective stress state changes due to the resulting pore pressure change and therefore, the strength and stiffness of the soil will change. In this work, the finite element method is utilized as a tool for the analysis of pile-soil systems in undrained condition. The computer program CRISP was developed to suit the problem requirements. CRISP uses the finite element technique and allows predictions to be made of ground deformation using critical state theories. Eight-node isoparametric element was added to the program in addition to the slip element. A pile loading problem was solved in which the pile-soil system is analyzed in undrained condition. The pile is modelled as elastic-plastic material, while the soil is assumed to follow the modified Cam clay model. During undrained loading condition, the settlement values increase by 22% when slip elements are used. The surface settlement increases by about three times when the load is doubled and the surface settlement at all points increases when using slip elements due to the mode of motion which allows smooth movement of the adjacent soil with respect to the pile. The vertical displacement increases as the distance decreases from the pile and negligible values are obtained beyond 10D (where D is the pile diameter) from the center of the pile and these values are slightly increased when slip elements are used. The vertical effective stress along a section at a distance D from the pile center is approximately the same for all load increments and lower values of effective vertical stress can be obtained when slip elements are used.展开更多
Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,n...Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,numerical simulation of the two tests was performed by three-dimensional finite element method(FEM)using ABAQUS program.The consolidated-drained triaxial test was also simulated by FEM and compared with theoretical results of MCC model.Especially,the behaviors of MCC model during unloading and reloading were analyzed in detail by FEM.The analysis and comparison indicate that the MCC model is able to accurately describe many features of the mechanical behavior of the soil in isotropic consolidation test and consolidated-drained triaxial test.And the MCC model can well describe the variation of excess pore water pressure with the development of axial strain in consolidated-undrained triaxial test,but its ability to predict the relationship between axial strain and shear stress is relatively poor.The comparison also shows that FEM solutions of the MCC model are basically identical to the theoretical ones.In addition,Mandel-Cryer effect unable to be discovered by the conventional triaxial test in laboratories was disclosed by FEM.The analysis of unloading-reloading by FEM demonstrates that the MCC model disobeys the law of energy conservation under the cyclic loading condition if the elastic shear modulus is linearly pressure-dependent.展开更多
This paper deeply analyses the influence of different local tectonic on stress performance of spatial curved steel box Girder Bridge, using the finite element analysis software to establish space finite element model ...This paper deeply analyses the influence of different local tectonic on stress performance of spatial curved steel box Girder Bridge, using the finite element analysis software to establish space finite element model of this bridge, calculation and analysis were made on the bridge of the strength, stiffness. It has certain reference value for guiding engineering design, have a good foundation for the mechanical properties and stability of linear and nonlinear further study of curved steel box girder.展开更多
A new spherical triangular finite element based on shallow shell formulation is developed in this paper. The element has six degrees of freedom at each comer node, five of which are the essential external degrees of f...A new spherical triangular finite element based on shallow shell formulation is developed in this paper. The element has six degrees of freedom at each comer node, five of which are the essential external degrees of freedom and the additional sixth is associated with the in-plane shell rotation. The displacement fields of the element satisfy the exact requirement of rigid body modes of motion. The element is based on independent strain assumption insofar as it is allowed by the compatibility equations. The element developed herein is first validated by applying it to the analysis of a benchmark problem involving a standard spherical shell with simply supported edges. The results of the analysis showed that reasonably accurate results were obtained even when modeling the shells using fewer elements compared to other shell element types. The element is then used in a finite element model to analyze polygon shaped spherical roof structures. The distribution of the various components of deflection and stress is obtained. Furthermore, the effect of introducing circular arched beams as stiffeners spanning the two diagonally opposite end comers is investigated. It is found that the stiffeners reduced the deflections and the stresses in the roof structure by considerable value.展开更多
The coupled model of a four-cylinder internal combustion engine and a dash panel was constructed to analyze the relationship between the engine noise and interior noise of an automobile. Finite element analysis, flexi...The coupled model of a four-cylinder internal combustion engine and a dash panel was constructed to analyze the relationship between the engine noise and interior noise of an automobile. Finite element analysis, flexible multi-body dynamics, and boundary element analysis were integrated to obtain the tetrahedron-element models, structural vibration response, and radiated noise,respectively. The accuracy of the finite-element model of the engine was validated by modal analysis via single-input multi-output technology, while the dash panel was validated by sound transmission loss experiment. The block was optimized to reduce the radiated acoustic power from the engine surface. The acoustic transfer path between the engine cabin and passenger compartment was then established. The coupled analysis results reveal that the interior noise is optimized due to the engine noise reduction.展开更多
The problem of geometric non-linearity simulation for spacial cable system was solved by introducing the truss element based on corotational coordinate (CR) system, cable structure materials and node coordinates and a...The problem of geometric non-linearity simulation for spacial cable system was solved by introducing the truss element based on corotational coordinate (CR) system, cable structure materials and node coordinates and automatic refreshing algorithms for element internal force. And the shape-finding problem for maneuvering profile was solved with the Newton-Raphson based on energy convergence criteria with search function. This has avoided the regular truss element assumption extensively used in traditional methods and catenary elements which have difficulties in practical application because of the complicated formulas. The use of CR formulation has taken into account the stiffness outside the cable plane via a geometric stiffness matrix, realizing the 3D space analysis of a cable bridge and improving the efficiency and precision for the space geometric non-linearity analysis and cable structure, and enabling more precised simulation of geometric form finding and internal force of the large span suspension bridge main cable under construction.展开更多
The present analysis was performed to obtain bearing strength for pinned joints in uni-directional graphite epoxy composite laminates using characteristic curve model. The characteristic dimensions used to determine t...The present analysis was performed to obtain bearing strength for pinned joints in uni-directional graphite epoxy composite laminates using characteristic curve model. The characteristic dimensions used to determine the characteristic curve were evaluated using a two-dimensional finite element model that was developed in ANSYS14.5 Software. Also, two-dimensional finite element stress analysis was developed to determine the stress distribution needed to evaluate the failure. Tsai-Wu failure criterion was used in the analysis with the characteristic curve to predict bearing strength. The results of the analysis showed good agreement with experimental data.展开更多
A nonconforming finite element method for the nonlinear parabolic equations is studied inthis paper.The convergence analysis is presented and the optimal error estimate in L^2(‖·‖_h)norm isobtained through Ritz...A nonconforming finite element method for the nonlinear parabolic equations is studied inthis paper.The convergence analysis is presented and the optimal error estimate in L^2(‖·‖_h)norm isobtained through Ritz projection technique,where ‖·‖_h is a norm over the finite element space.展开更多
基金Projects(51308273,41372307,41272326) supported by the National Natural Science Foundation of ChinaProjects(2010(A)06-b) supported by Science and Technology Fund of Yunan Provincial Communication Department,China
文摘Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.
基金Project(2013-KY-2) supported by the State Key Laboratory of Hydroscience and Engineering of Hydroscience, ChinaProject(50925931)supported by the National Funds for Distinguished Young Scientists, China
文摘Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the structure, while the strength reduction method relies on the arbitrary decision on the failure criteria. The dynamic limit equilibrium solution was proposed for the stability analysis of sliding block based on 3-D multi-grid method, by incorporating implicit stepping integration FEM. There are two independent meshes created in the analysis: One original 3-D FEM mesh is for the simulation of target structure and provides the stress time-history, while the other surface grid is for the simulation of sliding surface and could be selected and designed freely. As long as the stress time-history of the geotechnical structure under earthquake scenario is obtained based on 3-D nonlinear dynamic FEM analysis, the time-history of the force on sliding surface could be derived by projecting the stress time-history from 3-D FEM mesh to surface grid. After that, the safety factor time-history of the sliding block will be determined through applying limit equilibrium method. With those information in place, the structure's aseismatic stability ean be further studied. The above theory and method were also applied to the aseismatic stability analysis of Dagangshan arch dam's right bank high slope and compared with the the result generated by Quasi-static method. The comparative analysis reveals that the method not only raises the FEM's capability in accurate simulation of complicated geologic structure, but also increases the flexibility and comprehensiveness of limit equilibrium method. This method is reliable and recommended for further application in other real geotechnical engineering.
基金Project(51105287) supported by the National Natural Science Foundation of ChinaProject(2012BAA08003) supported by the Key Research and Development Project of New Products and New Technologies of Hubei Province, ChinaProject(2011-P05) supported by the State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology,China
文摘The aim of this work is to propose a 3D FE model of a theoretical assembling straight bevel gear pair to analyze the contact fatigue on the tooth surface and the bending fatigue in the tooth root. Based on the cumulative fatigue criterion and the stress-life equation, the key meshing states of the gear pair were investigated for the contact fatigue and the bending fatigue. Then, the reliability of the proposed model was proved by comparing the calculation result with the simulation result. Further study was performed to analyze the variation of the contact fatigue stress and the bending fatigue stress under different loads. Furthermore, the roles of the driving pinion and the driven gear pair were evaluated in the fatigue life of the straight bevel gear pair and the main fatigue failure mode was determined for the significant gear. The results show that the fatigue failure of the driving pinion is the main fatigue failure for the straight bevel gear pair and the bending fatigue failure is the main fatigue failure for the driving pinion.
基金Foundation item: Supported by the National Natural Science Foundation of China(10771198, 10590353) Supported by the Doctor Foundation(2008BS013) Supported by the Natural Science Foundation of Henan Province (682300410200)
文摘A nonconforming rectangular finite element is presented, which satisfies the discrete B-B condition for the Stokes problem. And the element has two order convergence rate for the velocity and pressure.
文摘We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. The present paper has six sections. A review of previous work on interactions between waves and ocean structures is presented in Section one. Section two gives the mathematical formulation. In Section three, the finite element discretization, mesh generation and the finite element linear system solution methods are described. Section four presents numerical methods including time marching schemes, computation of velocity, remeshing and smoothing techniques and numerical radiation conditions. The application of the FEM to the wave-structure interactions are presented in Section five followed by the concluding remarks in Section six.
基金Project(E2010001155) supported by the Natural Science Foundation of Hebei Province, China
文摘The advantage of built-up sleeved backup roll was described. Based on the stress distribution analysis and simulation for the built-up sleeved backup roll by using finite element method, the effects of roll sleeve thickness and shrink range on the stress-strain field were studied. Finally, based on the methodology and strategy of the fatigue analysis, fatigue life of backup roll was estimated by using the stress-strain data obtained through finite element simulation. The results show that roll sleeve thickness and shrink range have a great influence on sleeve stress distribution of built-up sleeved roll. Under the circumstance of ensuring transferring enough torque, the shrink range should be kept small. However, thicker roll sleeve has longer roll service life when the shrink range is constant.
文摘In order to enable a wind tunnel support to have a high enough natural frequency to prevent experiencing mechanical resonance and excessive vibration displacement, five kinds of wind tunnel support structures have been simulated and analyzed individually under five different load conditions by means of a nonlinear finite element numerical method. With natural frequency and three directions vibration displacement given, simulation and analyses indicated that additional supports is more beneficial than heightening the rigidity of steel reinforced concrete in support pillars and adopting steel wrappers on the pillars to increase natural frequency of support structure. Increasing the rigidity of steel reinforced concrete, adopting steel wrappers and providing additional supports are all helpful in reducing three directions vibration Max displacement. and additional supports are comparatively more effective. Therefore, a structure scheme with steel reinforced concrete support pillars, steel wrappers and additional supports should be adopted in practical wind tunnel support construction.
基金This research was funded by the Constructional Science and Technology Project of West Transportation,Ministry of Transport of People’s Republic of China(2003-318-799-17)
文摘At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in recent years,while there are lots of defects. This paper first identifies the location of failure surface and safety factor through the finite element program of PLAXIS and then analyses the influencing factors of the stability of reinforced earth retaining wall with geogrid. The authors adopt strength reduction FEM (finite element method)in the design and stability analysis of reinforced earth retaining wall and have achieved some satisfying results. Without any assumptions,the new design method can automatically judge the failure mode of reinforced earth retaining wall,consider the influence of axial tensile stiffness of the reinforcement stripe on the stability of retaining wall,identify reasonable distance and length of the reinforcement stripe,and choose suitable parameters of reinforcement stripe,including strength,stiffness and pseudo-friction coefficient which makes the design optimal. It is proved through the calculation examples that this method is more reasonable,reliable and economical in the design of reinforced earth retaining wall.
文摘Brazing has a wide acceptance in industries and its simplicity in variety of application attracts more and more patronage. The strength of brazing joint determines the reliability of brazed engineering components. So the need to ascertain the reliability or to predict its failure (without some destructive testing) becomes high even with a computer aided analysis using the Finite Element Analysis. Here, we have employed the services of FEA software, Abaqus CAE, as a tool for the computer calculation to investigate a joint case of cemented carbide brazed with silver-based filler metal. In this paper, 2D analysis has been adopted because the thickness of the material (in 2D) does not influence the final calculation results. We have applied constant loading and constant boundary condition to explore data from the elastic and plastic strain analysis through which we were able to predict the maximum joint strength with respect to the joint thickness. The pattern of the meshing was also significant. And the result could be transferable to a real-life field situation. The final results showed that there is an optimum thickness of the filler metal with the maximum strength which matches that obtained from experiment.
基金Project(51378469)supported by the National Natural Science Foundation of ChinaProject(Y1111240)supported by the Zhejiang Provincial Natural Science Foundation of ChinaProject(2013A610196)supported by the Natural Science Foundation of Ningbo City,China
文摘In the research field of ground water, hydraulic gradient is studied for decades. In the consolidation field, hydraulic gradient is yet to be investigated as an important hydraulic variable. So, the variation of hydraulic gradient in nonlinear finite strain consolidation was focused on in this work. Based on lab tests, the nonlinear compressibility and nonlinear permeability of Ningbo soft clay were obtained. Then, a strongly nonlinear governing equation was derived and it was solved with the finite element method.Afterwards, the numerical analysis was performed and it was verified with the existing experiment for Hong Kong marine clay. It can be found that the variation of hydraulic gradient is closely related to the magnitude of external load and the depth in soils. It is interesting that the absolute value of hydraulic gradient(AVHG) increases rapidly first and then decreases gradually after reaching the maximum at different depths of soils. Furthermore, the changing curves of AVHG can be roughly divided into five phases. This five-phase model can be employed to study the migration of pore water during consolidation.
基金Supported by Medical Scientific Research Foundation Item of Guangdong Province(A2008800)Science and Technology ProgramItem of Zhongshan City(20082A071and20113A049)
文摘Objective To investigate the changes of hipbone biomechanics after the resection of ischiopubic tumors and their relationships with the complications in the convalescent stage, and directing the postoperative pelvic reconstruction. Methods DICOM data were used to create an intact hipbone finite element model and postoperative model. The biomechanical indices on the same region in the two models under the same boundary condition were compared. The differences of displacement, stress, and strain of the two models were analyzed with statistical methods. Results The distribution areas of the hipbone nodes' displacement, stress, and strain were similar before and after the simulated operation. The sacroiliac joint nodes' displacement (P=0.040) and strain (P=0.000), and the acetabular roof nodes' stress (P=0.000) and strain (P=0.005) of two models had significant differences, respectively. But the sacroiliac joint nodes' stress (P=0.076) and the greater sciatic notch nodes' stress (P=0.825) and strain (P=0.506) did not have significant differences. Conclusions The resection of ischiopubic tumors mainly affect the biomechanical states of the homolateral sacroiliac joint and acetabular roof. The complications in the convalescent stage are due to the biomechanical changes of the sacroiliac joint and the acetabular roof and disappearances of the stabilization and connection functions of the pubic symphysis and superior ramus of pubis.
基金Project(RG086/10AET) supported by the Institute of Research Management and Monitoring (IPPP),University of Malaya (UM) under UMRG grant number,Malaysia
文摘The effective stress method is developed to predict the axial capacity of piles in clay. The effective stress state changes due to the resulting pore pressure change and therefore, the strength and stiffness of the soil will change. In this work, the finite element method is utilized as a tool for the analysis of pile-soil systems in undrained condition. The computer program CRISP was developed to suit the problem requirements. CRISP uses the finite element technique and allows predictions to be made of ground deformation using critical state theories. Eight-node isoparametric element was added to the program in addition to the slip element. A pile loading problem was solved in which the pile-soil system is analyzed in undrained condition. The pile is modelled as elastic-plastic material, while the soil is assumed to follow the modified Cam clay model. During undrained loading condition, the settlement values increase by 22% when slip elements are used. The surface settlement increases by about three times when the load is doubled and the surface settlement at all points increases when using slip elements due to the mode of motion which allows smooth movement of the adjacent soil with respect to the pile. The vertical displacement increases as the distance decreases from the pile and negligible values are obtained beyond 10D (where D is the pile diameter) from the center of the pile and these values are slightly increased when slip elements are used. The vertical effective stress along a section at a distance D from the pile center is approximately the same for all load increments and lower values of effective vertical stress can be obtained when slip elements are used.
基金Project(2011J01308) supported by the Natural Science Foundation of Fujian Province,China
文摘Isotropic consolidation test and consolidated-undrained triaxial test were first undertaken to obtain the parameters of the modified cam-clay(MCC)model and the behavior of natural clayey soil.Then,for the first time,numerical simulation of the two tests was performed by three-dimensional finite element method(FEM)using ABAQUS program.The consolidated-drained triaxial test was also simulated by FEM and compared with theoretical results of MCC model.Especially,the behaviors of MCC model during unloading and reloading were analyzed in detail by FEM.The analysis and comparison indicate that the MCC model is able to accurately describe many features of the mechanical behavior of the soil in isotropic consolidation test and consolidated-drained triaxial test.And the MCC model can well describe the variation of excess pore water pressure with the development of axial strain in consolidated-undrained triaxial test,but its ability to predict the relationship between axial strain and shear stress is relatively poor.The comparison also shows that FEM solutions of the MCC model are basically identical to the theoretical ones.In addition,Mandel-Cryer effect unable to be discovered by the conventional triaxial test in laboratories was disclosed by FEM.The analysis of unloading-reloading by FEM demonstrates that the MCC model disobeys the law of energy conservation under the cyclic loading condition if the elastic shear modulus is linearly pressure-dependent.
文摘This paper deeply analyses the influence of different local tectonic on stress performance of spatial curved steel box Girder Bridge, using the finite element analysis software to establish space finite element model of this bridge, calculation and analysis were made on the bridge of the strength, stiffness. It has certain reference value for guiding engineering design, have a good foundation for the mechanical properties and stability of linear and nonlinear further study of curved steel box girder.
文摘A new spherical triangular finite element based on shallow shell formulation is developed in this paper. The element has six degrees of freedom at each comer node, five of which are the essential external degrees of freedom and the additional sixth is associated with the in-plane shell rotation. The displacement fields of the element satisfy the exact requirement of rigid body modes of motion. The element is based on independent strain assumption insofar as it is allowed by the compatibility equations. The element developed herein is first validated by applying it to the analysis of a benchmark problem involving a standard spherical shell with simply supported edges. The results of the analysis showed that reasonably accurate results were obtained even when modeling the shells using fewer elements compared to other shell element types. The element is then used in a finite element model to analyze polygon shaped spherical roof structures. The distribution of the various components of deflection and stress is obtained. Furthermore, the effect of introducing circular arched beams as stiffeners spanning the two diagonally opposite end comers is investigated. It is found that the stiffeners reduced the deflections and the stresses in the roof structure by considerable value.
基金Project(2011BAE22B05)supported by the 12th Five-year National Key Projects of Science and Technology Support Plan,China
文摘The coupled model of a four-cylinder internal combustion engine and a dash panel was constructed to analyze the relationship between the engine noise and interior noise of an automobile. Finite element analysis, flexible multi-body dynamics, and boundary element analysis were integrated to obtain the tetrahedron-element models, structural vibration response, and radiated noise,respectively. The accuracy of the finite-element model of the engine was validated by modal analysis via single-input multi-output technology, while the dash panel was validated by sound transmission loss experiment. The block was optimized to reduce the radiated acoustic power from the engine surface. The acoustic transfer path between the engine cabin and passenger compartment was then established. The coupled analysis results reveal that the interior noise is optimized due to the engine noise reduction.
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)
文摘The problem of geometric non-linearity simulation for spacial cable system was solved by introducing the truss element based on corotational coordinate (CR) system, cable structure materials and node coordinates and automatic refreshing algorithms for element internal force. And the shape-finding problem for maneuvering profile was solved with the Newton-Raphson based on energy convergence criteria with search function. This has avoided the regular truss element assumption extensively used in traditional methods and catenary elements which have difficulties in practical application because of the complicated formulas. The use of CR formulation has taken into account the stiffness outside the cable plane via a geometric stiffness matrix, realizing the 3D space analysis of a cable bridge and improving the efficiency and precision for the space geometric non-linearity analysis and cable structure, and enabling more precised simulation of geometric form finding and internal force of the large span suspension bridge main cable under construction.
文摘The present analysis was performed to obtain bearing strength for pinned joints in uni-directional graphite epoxy composite laminates using characteristic curve model. The characteristic dimensions used to determine the characteristic curve were evaluated using a two-dimensional finite element model that was developed in ANSYS14.5 Software. Also, two-dimensional finite element stress analysis was developed to determine the stress distribution needed to evaluate the failure. Tsai-Wu failure criterion was used in the analysis with the characteristic curve to predict bearing strength. The results of the analysis showed good agreement with experimental data.
基金supported by the Natural Science Foundation of China under Grant Nos.10671184 and 10971203
文摘A nonconforming finite element method for the nonlinear parabolic equations is studied inthis paper.The convergence analysis is presented and the optimal error estimate in L^2(‖·‖_h)norm isobtained through Ritz projection technique,where ‖·‖_h is a norm over the finite element space.