期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
混合效应模型的非参数贝叶斯分位回归方法研究 被引量:3
1
作者 李翰芳 罗幼喜 田茂再 《统计研究》 CSSCI 北大核心 2016年第4期97-103,共7页
本文对混合效应模型提出了一种非参数贝叶斯分位回归方法,通过引进一种新的分层有限正态混合分布,将分位回归建模时对随机误差项的假定放宽至仅有分位点约束之下。通过对混合比例参数假设广泛灵活的Stick-Breaking先验,使得模型捕捉复... 本文对混合效应模型提出了一种非参数贝叶斯分位回归方法,通过引进一种新的分层有限正态混合分布,将分位回归建模时对随机误差项的假定放宽至仅有分位点约束之下。通过对混合比例参数假设广泛灵活的Stick-Breaking先验,使得模型捕捉复杂数据分布信息的能力更强。在建立的非参数贝叶斯分层分位回归模型中引入潜变量,使模型参数估计的Gibbs抽样算法中原来每次需要计算(2M)N项函数值变为每次只需计算N项即可。蒙特卡罗模拟显示,在误差分布函数变得较为复杂时,非参数贝叶斯分位回归方法比参数方法在估计效果上有更大的优势。 展开更多
关键词 混合效应模型 有限正态混合分布 Stick-Breaking先验 潜变量 Gibbs抽样算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部