Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in th...Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in the complex geological structures found in seismic exploration of the mountainous area in Northwestern China. More powerful techniques of seismic modeling are demanded for this purpose. In this paper, two methods of finite element-finite difference method (FE-FDM) and arbitrary difference precise integration (ADPI) for seismic forward modeling have been developed and implemented to understand the behavior of seismic waves in complex geological subsurface structures and reservoirs. Two case studies show that the FE-FDM and ADPI techniques are well suited to modeling seismic wave propagation in complex geology.展开更多
The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating s...The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage.The deepness of groove and the cell gap affect the distribution of director.For the relatively shallow groove and the relatively thick cell gap,the director is only dependent on the coordinate z.For the relatively deep groove and the relatively thin cell gap,the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface.展开更多
This work deals with the power exponent 1rand 2r respectively of the maximal and second-maximal prime factors of the order of simple K4-group, and the classification for simple 4{5,7}K--group G (i.e. G can not be divi...This work deals with the power exponent 1rand 2r respectively of the maximal and second-maximal prime factors of the order of simple K4-group, and the classification for simple 4{5,7}K--group G (i.e. G can not be divided by 5 nor by 7 or ()Gp= 4 ), simple 5 -4K-group G (i.e. G can not divided by 5 and ()Gp=4) and simple 7-4K-group G (i.e. G can not divided by 7 and ()Gp= 4). It is derived that 1r =1, 2 and 4, and 2r is not greater than 4. All the simple 4K-groups with order 235,237abcdabcdpp and 2357abcd are obtained.展开更多
Coronary stents are metal coils or mesh tubes delivered to blocked vessels through catheters, whic Recently, special drugs h are expanded by balloons to reopen and scaffold target vessels. are carried by stents (drug...Coronary stents are metal coils or mesh tubes delivered to blocked vessels through catheters, whic Recently, special drugs h are expanded by balloons to reopen and scaffold target vessels. are carried by stents (drug-eluting stents) to further reduce instent restenosis rate after stenting procedure. However, continual study on biomechanical characteristics of stents is necessary provide a more suitable drug loading for better interactions between stents and tissue, or to platform for drug-eluting stents. The purpose of this paper is to show how finite element methods can be used to study cell area and strut distribution changes of bent coronary stents. A same bending deformation was applied to two commercial coronary stent models by a rigid curved vessel. Results show that the stent design influenced the changes of cell area and strut distribution under bending situation. The stent with links had more cell area changes at outer curvature, and the stent with peak-peak ( 〉 〈 ) strut design could have strut contact and overlapping at inner curvature. In conclusion, this finite element method can be used to study and compare cell area and strut distribution changes of bent stents, and to provide a convenient tool for designers in testing and improving biomechanical characteristics of new stents.展开更多
Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are ...Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are neglected. This study extends the half-space model by accounting for the influence of cell geometry and compressibility(sphere model). Using a finite element analysis of cell aspiration into a micropipette, an elastic approximation formula of the aspirated length was derived for the sphere model. The approximation formula includes the geometry parameter of the sphere model(ζ = R/a, R is the radius of the cell, and a is the inner radius of the micropipette) and the Poisson's ratio v of the cell. The results indicate that the parameter and Poisson's ratio v markedly affect the aspirated length, particularly for small and v. When ζ→∞ and v→0.5,the approximation formula tends to the analytical solution for the half-space model. In the incompressible case(v = 0.5), within the general experimental range(ζ varying from 2 to 4), the difference between the analytical solution and the approximate one is significant, and is up to 29% of the approximation solution when ζ= 2. Additionally, parametere was introduced to evaluate the error of elastic moduli between the half-space model and sphere model. Based on the approximation formula, the ζ thresholds, beyond which e becomes larger than 10% and 20%, were derived.展开更多
In this paper a finite element model is developed to study cytosolic calcium concen- tration distribution in astrocytes for a two-dimensional steady-state case in presence of excess buffer. The mathematical model of c...In this paper a finite element model is developed to study cytosolic calcium concen- tration distribution in astrocytes for a two-dimensional steady-state case in presence of excess buffer. The mathematical model of calcium diffusion in astrocytes leads to a boundary value problem involving elliptical partial differential equation. The model con- sists of reaction-diffusion phenomena, association and dissociation rates and buffer. A point source of calcium is incorporated in the model. Appropriate boundary conditions have been framed. Finite element method is employed to solve the problem. A MATLAB program has been developed for the entire problem and simulated to compute the numer- ical results. The numerical results have been used to plot calcium concentration profiles in astrocytes. The effect of ECTA, BAPTA and aCa influx on calcium concentration distribution in astrocytes is studied with the help of numerical results.展开更多
基金supported by the Natural Science Foundation of China(Grant No.40574050,40821062)the National Basic Research Program of China(Grant No.2007CB209602)the Key Research Program of China National Petroleum Corporation(Grant No.06A10101)
文摘Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in the complex geological structures found in seismic exploration of the mountainous area in Northwestern China. More powerful techniques of seismic modeling are demanded for this purpose. In this paper, two methods of finite element-finite difference method (FE-FDM) and arbitrary difference precise integration (ADPI) for seismic forward modeling have been developed and implemented to understand the behavior of seismic waves in complex geological subsurface structures and reservoirs. Two case studies show that the FE-FDM and ADPI techniques are well suited to modeling seismic wave propagation in complex geology.
基金Supported by Natural Science Foundation of Hebei Province under Grant No.A2010000004the National Natural Science Foundation of China under Grant Nos.10704022 and 60736042the Key Subject Construction Project of Hebei Province University
文摘The director in nematic liquid crystal cell with a weak anchoring grating substrate and a strong anchoring planar substrate is relative to the coordinates x and z.The influence of the surface geometry of the grating substrate in the cell on the director profile is numerically simulated using the two-dimensional finite-difference iterative method under the condition of one elastic constant approximation and zero driven voltage.The deepness of groove and the cell gap affect the distribution of director.For the relatively shallow groove and the relatively thick cell gap,the director is only dependent on the coordinate z.For the relatively deep groove and the relatively thin cell gap,the director must be dependent on the two coordinates x and z because of the increased elastic strain energy induced by the grating surface.
文摘This work deals with the power exponent 1rand 2r respectively of the maximal and second-maximal prime factors of the order of simple K4-group, and the classification for simple 4{5,7}K--group G (i.e. G can not be divided by 5 nor by 7 or ()Gp= 4 ), simple 5 -4K-group G (i.e. G can not divided by 5 and ()Gp=4) and simple 7-4K-group G (i.e. G can not divided by 7 and ()Gp= 4). It is derived that 1r =1, 2 and 4, and 2r is not greater than 4. All the simple 4K-groups with order 235,237abcdabcdpp and 2357abcd are obtained.
文摘Coronary stents are metal coils or mesh tubes delivered to blocked vessels through catheters, whic Recently, special drugs h are expanded by balloons to reopen and scaffold target vessels. are carried by stents (drug-eluting stents) to further reduce instent restenosis rate after stenting procedure. However, continual study on biomechanical characteristics of stents is necessary provide a more suitable drug loading for better interactions between stents and tissue, or to platform for drug-eluting stents. The purpose of this paper is to show how finite element methods can be used to study cell area and strut distribution changes of bent coronary stents. A same bending deformation was applied to two commercial coronary stent models by a rigid curved vessel. Results show that the stent design influenced the changes of cell area and strut distribution under bending situation. The stent with links had more cell area changes at outer curvature, and the stent with peak-peak ( 〉 〈 ) strut design could have strut contact and overlapping at inner curvature. In conclusion, this finite element method can be used to study and compare cell area and strut distribution changes of bent stents, and to provide a convenient tool for designers in testing and improving biomechanical characteristics of new stents.
基金supported by the National Natural Science Foundation of China(Grant No.11032008)the Youth Fund of Taiyuan University of Technology
文摘Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are neglected. This study extends the half-space model by accounting for the influence of cell geometry and compressibility(sphere model). Using a finite element analysis of cell aspiration into a micropipette, an elastic approximation formula of the aspirated length was derived for the sphere model. The approximation formula includes the geometry parameter of the sphere model(ζ = R/a, R is the radius of the cell, and a is the inner radius of the micropipette) and the Poisson's ratio v of the cell. The results indicate that the parameter and Poisson's ratio v markedly affect the aspirated length, particularly for small and v. When ζ→∞ and v→0.5,the approximation formula tends to the analytical solution for the half-space model. In the incompressible case(v = 0.5), within the general experimental range(ζ varying from 2 to 4), the difference between the analytical solution and the approximate one is significant, and is up to 29% of the approximation solution when ζ= 2. Additionally, parametere was introduced to evaluate the error of elastic moduli between the half-space model and sphere model. Based on the approximation formula, the ζ thresholds, beyond which e becomes larger than 10% and 20%, were derived.
文摘In this paper a finite element model is developed to study cytosolic calcium concen- tration distribution in astrocytes for a two-dimensional steady-state case in presence of excess buffer. The mathematical model of calcium diffusion in astrocytes leads to a boundary value problem involving elliptical partial differential equation. The model con- sists of reaction-diffusion phenomena, association and dissociation rates and buffer. A point source of calcium is incorporated in the model. Appropriate boundary conditions have been framed. Finite element method is employed to solve the problem. A MATLAB program has been developed for the entire problem and simulated to compute the numer- ical results. The numerical results have been used to plot calcium concentration profiles in astrocytes. The effect of ECTA, BAPTA and aCa influx on calcium concentration distribution in astrocytes is studied with the help of numerical results.