To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were est...To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were established based on the symmetry of roll casting by ANSYS software.Meshing method and smart-sizing algorithm were used to divide finite element mesh in ANSYS software.A series of researches on the temperature and stress distributions during solidification process with different process parameters were done by 3D finite element method.The temperatures of both the liquid-solid two-phase zone and liquid phase zone were elevated with increasing pouring temperature.With the heat transfer coefficient increasing,the two-phase region for liquid-solid becomes smaller.With the pouring temperature increasing and the increase of casting speed,the length of two-phase zone rises.The optimized of process parameters(casting speed 2 m/min,pouring temperature 640 ℃ and heat transfer coefficient 15 kW/(m2·℃) with the water pouring at roller exit was used to produce magnesium alloy AZ31 sheet,and equiaxed grains with the average grain size of 50 μm were achieved after roll casting.The simulation results give better understanding of the temperature variation in phase transformation zone and the formation mechanism of hot cracks in plates during roll casting and help to design the optimized process parameters of roll casting for Mg alloy.展开更多
In this paper a finite dimensional Liouville completely integrable system With timedependent coefficients: H=1/2(P,P) +1/2 t-3 (q,Aq) -1/8 t-9/2 (q,q)2, is obtained. It is proved that when (p,q) satisfies two noninvo...In this paper a finite dimensional Liouville completely integrable system With timedependent coefficients: H=1/2(P,P) +1/2 t-3 (q,Aq) -1/8 t-9/2 (q,q)2, is obtained. It is proved that when (p,q) satisfies two noninvolutive systems (H) and (F1), the constraint u =1 /2t-9/2 (q,q) - 7x/(12t) gives a solution of generalized CKdV equation.展开更多
A novel polarization splitter based on octagonal dual-core photonic crystal fiber(O-D-PCF) is proposed. The impacts of several fiber parameters on the coupling characteristics of the polarization splitter are investig...A novel polarization splitter based on octagonal dual-core photonic crystal fiber(O-D-PCF) is proposed. The impacts of several fiber parameters on the coupling characteristics of the polarization splitter are investigated by full-vectorial finite element method(FV-FEM) in detail. Through optimizing the fiber configuration, a 4.267-mm-long polarization splitter with a bandwidth of 37 nm is achieved, and its extinction ratio(ER) is as high as 81.2 d B at the wavelength of 1.55 μm. Compared with the hexagonal dual-core photonic crystal fiber(H-D-PCF) based polarization splitter, both ER and bandwidth of the O-D-PCF based one are effectively improved.展开更多
An analytic control protocol of two types of finite dimensional quantum systems is proposed. The system can be driven to an arbitrary target state using cosine classical fields in finite cycles. The control parameters...An analytic control protocol of two types of finite dimensional quantum systems is proposed. The system can be driven to an arbitrary target state using cosine classical fields in finite cycles. The control parameters which are time periods of interaction between systems and control fields in each cycle are connected with the probability amplitudes of target states via trigonometrical functions and can be determined analytically.展开更多
基金Project(CSTC 2010BB4301) supported by Natural Science Foundation Project of Chongqing,ChinaProject supported by the Open Fund for Key Laboratory of Manufacture and Test Techniques for Automobile Parts of Ministry of Education Chongqing University of Technology,2003,China
文摘To study the influence of roll casting process parameters on temperature and thermal-stress fields for the AZ31 magnesium alloy sheets,three-dimensional geometric and 3D finite element models for roll casting were established based on the symmetry of roll casting by ANSYS software.Meshing method and smart-sizing algorithm were used to divide finite element mesh in ANSYS software.A series of researches on the temperature and stress distributions during solidification process with different process parameters were done by 3D finite element method.The temperatures of both the liquid-solid two-phase zone and liquid phase zone were elevated with increasing pouring temperature.With the heat transfer coefficient increasing,the two-phase region for liquid-solid becomes smaller.With the pouring temperature increasing and the increase of casting speed,the length of two-phase zone rises.The optimized of process parameters(casting speed 2 m/min,pouring temperature 640 ℃ and heat transfer coefficient 15 kW/(m2·℃) with the water pouring at roller exit was used to produce magnesium alloy AZ31 sheet,and equiaxed grains with the average grain size of 50 μm were achieved after roll casting.The simulation results give better understanding of the temperature variation in phase transformation zone and the formation mechanism of hot cracks in plates during roll casting and help to design the optimized process parameters of roll casting for Mg alloy.
文摘In this paper a finite dimensional Liouville completely integrable system With timedependent coefficients: H=1/2(P,P) +1/2 t-3 (q,Aq) -1/8 t-9/2 (q,q)2, is obtained. It is proved that when (p,q) satisfies two noninvolutive systems (H) and (F1), the constraint u =1 /2t-9/2 (q,q) - 7x/(12t) gives a solution of generalized CKdV equation.
基金supported by the National Natural Science Foundation of China(No.61405096)
文摘A novel polarization splitter based on octagonal dual-core photonic crystal fiber(O-D-PCF) is proposed. The impacts of several fiber parameters on the coupling characteristics of the polarization splitter are investigated by full-vectorial finite element method(FV-FEM) in detail. Through optimizing the fiber configuration, a 4.267-mm-long polarization splitter with a bandwidth of 37 nm is achieved, and its extinction ratio(ER) is as high as 81.2 d B at the wavelength of 1.55 μm. Compared with the hexagonal dual-core photonic crystal fiber(H-D-PCF) based polarization splitter, both ER and bandwidth of the O-D-PCF based one are effectively improved.
基金Supported by the National Science Foundation of China under Grant Nos.11075108 and 61374057
文摘An analytic control protocol of two types of finite dimensional quantum systems is proposed. The system can be driven to an arbitrary target state using cosine classical fields in finite cycles. The control parameters which are time periods of interaction between systems and control fields in each cycle are connected with the probability amplitudes of target states via trigonometrical functions and can be determined analytically.