期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于目标总损失量择优的有限解集多目标决策方法
1
作者 范培蕾 杨涛 +1 位作者 张晓今 张青斌 《系统仿真学报》 CAS CSCD 北大核心 2011年第1期146-150,154,共6页
基于灵敏稳健性设计思想,定义了单目标优化时的单目标损失量和多目标优化问题中的目标总损失量;继而对基于重要度的损失权重系数确定方法进行详细研究,并提出了基于目标总损失量择优的有限解集多目标决策方法,旨在选择候选解集中受不确... 基于灵敏稳健性设计思想,定义了单目标优化时的单目标损失量和多目标优化问题中的目标总损失量;继而对基于重要度的损失权重系数确定方法进行详细研究,并提出了基于目标总损失量择优的有限解集多目标决策方法,旨在选择候选解集中受不确定因素和设计变量误差的影响最小、敏感性最低的Pareto解为最终方案;最后以卫星附件控制系统为例进行仿真,充分验证了此方法的有效性和可行性。 展开更多
关键词 目标损失量 损失权重系数 有限解集 多目标决策方法
下载PDF
PARAMETRIC EQUATION SOLVING AND QUANTIFIER ELIMINATION IN FINITE FIELDS WITH THE CHARACTERISTIC SET METHOD 被引量:3
2
作者 Zhenyu HUANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第4期778-791,共14页
For a parametric algebraic system in finite fields, this paper presents a method for computing the cover and the refined cover based on the characteristic set method. From the cover, the author knows for what parametr... For a parametric algebraic system in finite fields, this paper presents a method for computing the cover and the refined cover based on the characteristic set method. From the cover, the author knows for what parametric values the system has solutions and at the same time presents the solutions in the form of proper chains. By the refined cover, the author gives a complete classification of the number of solutions for this system, that is, the author divides the parameter space into several disjoint components, and on every component the system has a fix number of solutions. Moreover, the author develops a method of quantifier elimination for first order formulas in finite fields. 展开更多
关键词 Characteristic set method finite field parametric equation system quantifier elimination.
原文传递
Equality-constrained minimization of polynomial functions
3
作者 XIAO ShuiJing ZENG GuangXing 《Science China Mathematics》 SCIE CSCD 2015年第10期2181-2204,共24页
This paper investigates the equality-constrained minimization of polynomial functions. Let R be the field of real numbers, and R[x1,..., xn] the ring of polynomials over R in variables x1,..., xn. For an f ∈ R[x1,...... This paper investigates the equality-constrained minimization of polynomial functions. Let R be the field of real numbers, and R[x1,..., xn] the ring of polynomials over R in variables x1,..., xn. For an f ∈ R[x1,..., xn] and a finite subset H of R[x1,..., xn], denote by V(f : H) the set {f( ˉα) | ˉα∈ Rn, and h( ˉα) =0, ? h ∈ H}. We provide an effective algorithm for computing a finite set U of non-zero univariate polynomials such that the infimum inf V(f : H) of V(f : H) is a root of some polynomial in U whenever inf V(f : H) = ±∞.The strategies of this paper are decomposing a finite set of polynomials into triangular chains of polynomials and computing the so-called revised resultants. With the aid of the computer algebraic system Maple, our algorithm has been made into a general program to treat the equality-constrained minimization of polynomials with rational coefficients. 展开更多
关键词 polynomial function equality constraints equality-constrained minimization constrained infimum Wu’s algorithm triangular decompo
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部