In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object a...In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.展开更多
We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to sol...We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff botmdary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.展开更多
We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high...We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.展开更多
With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) meth...With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) method. The reflection of the ABC caused by both the truncated error and the phase velocity error is analyzed. Based on the phase velocity estimation and the nonuniform cell, two methods are studied and then adopted to improve the performance of the ABC. A calculation case of a rectangular waveguide which is a typical dispersive transmission line is carried out using the ADI-FDTD method with the improved ABC for evaluation. According to the calculated case, the comparison is given between the reflection coefficients of the ABC with and without the velocity estimation and also the comparison between the reflection coefficients of the ABC with and without the nonuniform processing. The reflection variation of the ABC under different time steps is also analyzed and the acceptable worsening will not obscure the improvement on the absorption. Numerical results obviously show that efficient improvement on the absorbing performance of the ABC is achieved based on these methods for the ADI-FDTD.展开更多
An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,...An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,free surface and solid boundary in this paper.The characteristics of waves propagating over a step have been investigated by this numerical model.The breaker wave height is determined depending on the kinetic criterion.The numerical model is verified by laboratory experiments,and the empirical formula for the damping of wave height due to breaking is also given by experiments.展开更多
The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduct...The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduction in computer memory requirements and computational time. The computational domain is greatly reduced to enable performance in personal computer. At the same time because edges of a boundary and summits are treated well, the computational results is more accurate and more collector.展开更多
Based on the pure quasi-P wave equation in transverse isotropic media with a vertical symmetry axis (VTI media), a quasi-P wave equation is obtained in transverse isotropic media with a tilted symmetry axis (TTI me...Based on the pure quasi-P wave equation in transverse isotropic media with a vertical symmetry axis (VTI media), a quasi-P wave equation is obtained in transverse isotropic media with a tilted symmetry axis (TTI media). This is achieved using projection transformation, which rotates the direction vector in the coordinate system of observation toward the direction vector for the coordinate system in which the z-component is parallel to the symmetry axis of the TTI media. The equation has a simple form, is easily calculated, is not influenced by the pseudo-shear wave, and can be calculated reliably when δ is greater than ε. The finite difference method is used to solve the equation. In addition, a perfectly matched layer (PML) absorbing boundary condition is obtained for the equation. Theoretical analysis and numerical simulation results with forward modeling prove that the equation can accurately simulate a quasi-P wave in TTI medium.展开更多
In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered gri...In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirrorimage symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.展开更多
Based on FDTD difference expressions and eigenfunctions of Maxwell functions in cylindrical coordinates, mesh wave impedances (MWIs) in 2D and 3D cylindrical coordinates were introduced. Combined with the concept of p...Based on FDTD difference expressions and eigenfunctions of Maxwell functions in cylindrical coordinates, mesh wave impedances (MWIs) in 2D and 3D cylindrical coordinates were introduced. Combined with the concept of perfectly matched layer (PML), MWI PML absorbing boundary condition (ABC) algorithm was deduced in 2D cylindrical coordinates. Numerical experiments were done to investigate the validity of MWI and its application in cylindrical coordinates FDTD algorithm. The results showed that MWI in cylindrical coordinates can be used to accurately calculate the numerical reflection error caused by different mesh increments in non uniform FDTD. MWI can also provide theoretical criterion to define the permitted variable range of mesh dimension. MWI PML ABC is easy to be applied and reduces low numerical reflection, which only causes a little higher reflection error compared with Teixeira's PML.展开更多
This paper presents a comparison among Adomian decomposition method (ADM), Wavelet-Galerkin method (WGM), the fully explicit (1,7) finite difference technique (FTCS), the fully implicit (7,1) finite difference method ...This paper presents a comparison among Adomian decomposition method (ADM), Wavelet-Galerkin method (WGM), the fully explicit (1,7) finite difference technique (FTCS), the fully implicit (7,1) finite difference method (BTCS), (7,7) Crank-Nicholson type finite difference formula (C-N), the fully explicit method (1,13) and 9-point finite difference method, for solving parabolic differential equations with arbitrary boundary conditions and based on weak form functionals in finite domains. The problem is solved rapidly, easily and elegantly by ADM. The numerical results on a 2D transient heat conducting problem and 3D diffusion problem are used to validate the proposed ADM as an effective numerical method for solving finite domain parabolic equations. The numerical results showed that our present method is less time consuming and is easier to use than other methods. In addition, we prove the convergence of this method when it is applied to the nonlinear parabolic equation.展开更多
Donnell’s thin shell theory and basic equations based on the wave propagation method discussed in detail here, is used to investigate the natural frequencies of thin finite length circular cylindrical shells under va...Donnell’s thin shell theory and basic equations based on the wave propagation method discussed in detail here, is used to investigate the natural frequencies of thin finite length circular cylindrical shells under various boundary conditions. Mode shapes are drawn to explain the circumferential mode number n and axial mode number m, and the natural frequencies are cal-culated numerically and compared with those of FEM (finite element method) to confirm the reliability of the analytical solution. The effects of relevant parameters on natural frequencies are discussed thoroughly. It is shown that for long thin shells the method is simple, accurate and effective.展开更多
A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpola...A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples.展开更多
Problems of fluid structure interactions are governed by a set of fundamental parameters. This work aims at showing through simple examples the changes in natural vibration frequencies and mode shapes for wall-cavity ...Problems of fluid structure interactions are governed by a set of fundamental parameters. This work aims at showing through simple examples the changes in natural vibration frequencies and mode shapes for wall-cavity systems when the structural rigidity is modified. Numerical results are constructed using ANSYS software with triangular finite elements for both the fluid (2D acoustic elements) and the solid (plane stress) domains. These former results are compared to proposed analytical expressions, showing an alternative benchmark tool for the analyst. Very rigid wall structures imply in frequencies and mode shapes almost identical to those achieved for an acoustic cavity with Neumann boundary condition at the interface. In this case, the wall behaves as rigid and fluid-structure system mode shapes are similar to those achieved for the uncoupled reservoir case.展开更多
In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experiment...In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experimental data the mathematical model for calculating the concentration of metal at different points in peat layers is developed. A specific feature of these problems is that it is necessary to solve the 3-D boundary-value problems for the partial differential equations (PDEs) of the elliptic type of second order with piece-wise diffusion coefficients in the three layer domain. We develop here a finite-difference method for solving a problem of the above type with the periodical boundary condition in x direction. This procedure allows reducing the 3-D problem to a system of 2-D problems by using a circulant matrix.展开更多
文摘In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.
基金financially supported by the National High Technology Research and Development Program of China(No.2012AA09A20105)the National Science Foundation Network(No.41574127)
文摘We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff botmdary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.
基金supported by the National Nature Science Foundation of China(Grant No.U1262208)the Important National Science & Technology Specific Projects(Grant No.2011ZX05019-008)
文摘We apply the newly proposed double absorbing boundary condition(DABC)(Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference(FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer(PML), the complexity decreases, and the stability and fl exibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.
基金The National Natural Science Foundation of China(No.60702027)the Free Research Fund of the National Mobile Communications Research Laboratory of Southeast University (No.2008B07)the National Basic Research Program of China(973 Program)(No.2007CB310603)
文摘With the linear interpolation method, an improved absorbing boundary condition(ABC)is introduced and derived, which is suitable for the alternating-direction-implicit finite- difference time-domain (ADI-FDTD) method. The reflection of the ABC caused by both the truncated error and the phase velocity error is analyzed. Based on the phase velocity estimation and the nonuniform cell, two methods are studied and then adopted to improve the performance of the ABC. A calculation case of a rectangular waveguide which is a typical dispersive transmission line is carried out using the ADI-FDTD method with the improved ABC for evaluation. According to the calculated case, the comparison is given between the reflection coefficients of the ABC with and without the velocity estimation and also the comparison between the reflection coefficients of the ABC with and without the nonuniform processing. The reflection variation of the ABC under different time steps is also analyzed and the acceptable worsening will not obscure the improvement on the absorption. Numerical results obviously show that efficient improvement on the absorbing performance of the ABC is achieved based on these methods for the ADI-FDTD.
文摘An idealized numerical wave flume has been established by finite element method on the bases of Navier Stokes equations through prescribing the appropriate boundary conditions for the open boundary,incident boundary,free surface and solid boundary in this paper.The characteristics of waves propagating over a step have been investigated by this numerical model.The breaker wave height is determined depending on the kinetic criterion.The numerical model is verified by laboratory experiments,and the empirical formula for the damping of wave height due to breaking is also given by experiments.
文摘The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduction in computer memory requirements and computational time. The computational domain is greatly reduced to enable performance in personal computer. At the same time because edges of a boundary and summits are treated well, the computational results is more accurate and more collector.
基金supported by the National Natural Science Foundation of China(No.41674118)the national science and technology major project(No.2016ZX05027-002)
文摘Based on the pure quasi-P wave equation in transverse isotropic media with a vertical symmetry axis (VTI media), a quasi-P wave equation is obtained in transverse isotropic media with a tilted symmetry axis (TTI media). This is achieved using projection transformation, which rotates the direction vector in the coordinate system of observation toward the direction vector for the coordinate system in which the z-component is parallel to the symmetry axis of the TTI media. The equation has a simple form, is easily calculated, is not influenced by the pseudo-shear wave, and can be calculated reliably when δ is greater than ε. The finite difference method is used to solve the equation. In addition, a perfectly matched layer (PML) absorbing boundary condition is obtained for the equation. Theoretical analysis and numerical simulation results with forward modeling prove that the equation can accurately simulate a quasi-P wave in TTI medium.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No. 41074100)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No. NCET-10-0812)
文摘In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirrorimage symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.
文摘Based on FDTD difference expressions and eigenfunctions of Maxwell functions in cylindrical coordinates, mesh wave impedances (MWIs) in 2D and 3D cylindrical coordinates were introduced. Combined with the concept of perfectly matched layer (PML), MWI PML absorbing boundary condition (ABC) algorithm was deduced in 2D cylindrical coordinates. Numerical experiments were done to investigate the validity of MWI and its application in cylindrical coordinates FDTD algorithm. The results showed that MWI in cylindrical coordinates can be used to accurately calculate the numerical reflection error caused by different mesh increments in non uniform FDTD. MWI can also provide theoretical criterion to define the permitted variable range of mesh dimension. MWI PML ABC is easy to be applied and reduces low numerical reflection, which only causes a little higher reflection error compared with Teixeira's PML.
文摘This paper presents a comparison among Adomian decomposition method (ADM), Wavelet-Galerkin method (WGM), the fully explicit (1,7) finite difference technique (FTCS), the fully implicit (7,1) finite difference method (BTCS), (7,7) Crank-Nicholson type finite difference formula (C-N), the fully explicit method (1,13) and 9-point finite difference method, for solving parabolic differential equations with arbitrary boundary conditions and based on weak form functionals in finite domains. The problem is solved rapidly, easily and elegantly by ADM. The numerical results on a 2D transient heat conducting problem and 3D diffusion problem are used to validate the proposed ADM as an effective numerical method for solving finite domain parabolic equations. The numerical results showed that our present method is less time consuming and is easier to use than other methods. In addition, we prove the convergence of this method when it is applied to the nonlinear parabolic equation.
文摘Donnell’s thin shell theory and basic equations based on the wave propagation method discussed in detail here, is used to investigate the natural frequencies of thin finite length circular cylindrical shells under various boundary conditions. Mode shapes are drawn to explain the circumferential mode number n and axial mode number m, and the natural frequencies are cal-culated numerically and compared with those of FEM (finite element method) to confirm the reliability of the analytical solution. The effects of relevant parameters on natural frequencies are discussed thoroughly. It is shown that for long thin shells the method is simple, accurate and effective.
文摘A four-node quadrilateral shell element with smoothed membrane-bending based on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending and membrane element. It is based on mixed interpolation where the bending and membrane stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms are approximated by independent interpolation functions in natural coordinates. The proposed element is robust, computationally inexpensive and free of locking. Since the integration is done on the element boundaries for the bending and membrane terms, the element is more accurate than the MITC4 element for distorted meshes. This will be demonstrated for several numerical examples.
文摘Problems of fluid structure interactions are governed by a set of fundamental parameters. This work aims at showing through simple examples the changes in natural vibration frequencies and mode shapes for wall-cavity systems when the structural rigidity is modified. Numerical results are constructed using ANSYS software with triangular finite elements for both the fluid (2D acoustic elements) and the solid (plane stress) domains. These former results are compared to proposed analytical expressions, showing an alternative benchmark tool for the analyst. Very rigid wall structures imply in frequencies and mode shapes almost identical to those achieved for an acoustic cavity with Neumann boundary condition at the interface. In this case, the wall behaves as rigid and fluid-structure system mode shapes are similar to those achieved for the uncoupled reservoir case.
文摘In this paper we consider averaging and finite difference methods for solving the 3-D boundary-value problem in a multilayered domain. We consider the metal concentration in the 3 layered peat blocks. Using experimental data the mathematical model for calculating the concentration of metal at different points in peat layers is developed. A specific feature of these problems is that it is necessary to solve the 3-D boundary-value problems for the partial differential equations (PDEs) of the elliptic type of second order with piece-wise diffusion coefficients in the three layer domain. We develop here a finite-difference method for solving a problem of the above type with the periodical boundary condition in x direction. This procedure allows reducing the 3-D problem to a system of 2-D problems by using a circulant matrix.