With the challenge from services diversity grows greatly,the service-oriented supporting ability is required to current high-speed passive optical network(PON) .Aimed to enhance the quality of service(Qo S) brought by...With the challenge from services diversity grows greatly,the service-oriented supporting ability is required to current high-speed passive optical network(PON) .Aimed to enhance the quality of service(Qo S) brought by diversified-services,this paper proposes an Simplified Echo State Network(SESN) Based Services Awareness scheme in High-Speed PON(Passive Optical Network) .In this proposed scheme,the ring topology is adopted in the reservoir of SESN to reduce the complexity of original Echo State Network,and system dynamics equation is introduced to keep the accuracy of SESN.According to the network architecture of 10G-EPON,a SESN Master is running in the OLT and a number of SESN Agents work in ONUs.The SESN Master plays the main function of service-awareness from the total view of various kinds services in 10G-EPON system,by fully SESN training.Then,the reservoir information of well-trained SESN in OLT will be broadcasted to all ONUs and those SESN Agents working in ONUs are allowed to conducts independent service-awareness function.Thus,resources allocation and transport policy are both determined just only in ONUs.Simulation results show that the proposed mechanism is able to better supporting ability for multiple services.展开更多
Driven by ZTE and other telecom vendors and operators in order to meet the ever increasing bandwidth demand from fixed optical network users and mobile backhaul/fronthaul services, the latest next generation passive o...Driven by ZTE and other telecom vendors and operators in order to meet the ever increasing bandwidth demand from fixed optical network users and mobile backhaul/fronthaul services, the latest next generation passive optical network (NG- PON2) is being standardized by Full Service Access Network (FSAN) and International Telecommunication Union (ITU-T) which consists of two separated sub-systems, hybrid time- and wavelength-division multiplexing PON (TWDM-PON) and point-to-point wavelength- division multiplex (PtP WDM). The TWDM-PON will be used for traditional residential, business and wireless backhaul services which are not sensitive to time delay and delay variation, whereas the PtP WDM is mainly used for emerging wireless fronthaul service which is very sensitive to the time delay and time delay variation. However, as a main international standards' contributor, ZTE thinks for those operators who offer multiple-level of services to both residential, business and mobile backhaul/fronthaul users, this obviously raises significant economic and power concerns by demanding to deploy two separated systems. Therefore, in this paper, for the first time, ZTE proposes a new converged optical and wireless integrated network architecture and topology by applying orthogonal frequency division multiplexing(OFDM) PON technology, which is able to simultaneously support residential, business and mobile backhaul/fronthaul services in terms of meeting the requirements of both time delay sensitive and non-sensitive services, and also address the economic and power concerns compared with conventional technologies. This architecture is further investigated and analyzed in depth on functional block, Quality-of-service (QoS), synchronization and deployment considerations. Also ZTE reports in this paper the first 40Gbps OFDM- PON prototype in which eight wavelengths each with 5Gbps Ethernet data via 10G-PON encapsulation method (X-GEM) and 10G-PON transmission convergence (X-GTC) framing are demonstrated.展开更多
The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features ...The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features such as rapid provisioning,automated protection and restoration(P&R),efficient resource allocation,and support for different quality of service(QoS) requirements.In this paper,we propose a novel stateful PCE-cloud(SPC)based architecture of GMPLS optical networks for cloud services.The cloud computing technologies(e.g.virtualization and parallel computing) are applied to the construction of SPC for improving the reliability and maximizing resource utilization.The functions of SPC and GMPLS based control plane are expanded according to the features of cloud services for different QoS requirements.The architecture and detailed description of the components of SPC are provided.Different potential cooperation relationships between public stateful PCE cloud(PSPC) and region stateful PCE cloud(RSPC) are investigated.Moreover,we present the policy-enabled and constraint-based routing scheme base on the cooperation of PSPC and RSPC.Simulation results for verifying the performance of routing and control plane reliability are analyzed.展开更多
Abstract: Real-time digital service and mul- timedia service upstream transmission in Dig- ital Signal Processing (DSP)-based Orthogo- nal Frequency Division Multiplexing-Passive Optical Network (OFDM-PON) is exp...Abstract: Real-time digital service and mul- timedia service upstream transmission in Dig- ital Signal Processing (DSP)-based Orthogo- nal Frequency Division Multiplexing-Passive Optical Network (OFDM-PON) is experimen- tally demonstrated with Centralised Light Sou- rce (CLS) configuration in this paper. After transmitted over 25 km Standard Single Mode Fibre (SSMF) with -16.5 dBm optical power at receiver, the Bit Error Rate (BER) is 9.5 ×10^-11. The implementations of digital domain up-conversion and down-conversion based on Field Programmable Gate Array (FPGA) are int- roduced, which can reduce the cost of In-ph- ase and Quadrature (IQ) radio frequency mix- ers utilised at transmitter and receiver. A car- rier synchronization algorithm is implemented for compensating carrier offset. A channel eq- ualization algorithm is adopted for compen- sating the damage of channel. A new structure of Frequency Synchronization Unit (FSU) des- igned in FPGA is also proposed to cope with the frequency shifting at receiver.展开更多
Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for ...Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for traffic and no longer change.The inflexible decision making of the traffic transfer mode leads to low resource utilization when the arrival rate of the OCS traffic is lower than the capacity of the light path.In this paper,a new transmission scheme is proposed to improve resource utilization for hybrid optical switching networks.When the traffic arrival rate of the light path is lower than the transmission rate of the light path,the OCS traffic flow is reshaped at the edge nodes to generate a series of voids.Then,several message packets are sent along the light path to inform the core nodes of the voids of the light paths that represent the unused bandwidth resources.To improve the resource utilization,the voids can be filled with data bursts by core nodes.The simulation results show that the new scheme can effectively reduce the burst loss rate and improve the link utilization of the hybrid optical switching network on the premise of a providing service quality guarantee for OCS traffic.展开更多
基金supported by the Science and Technology Project of State Grid Corporation of China:“Research on the Communication Architecture and Hardware-In-the-Loop Simu-lation of Real-Time Wide-Area Stability Control for Electric Power System”
文摘With the challenge from services diversity grows greatly,the service-oriented supporting ability is required to current high-speed passive optical network(PON) .Aimed to enhance the quality of service(Qo S) brought by diversified-services,this paper proposes an Simplified Echo State Network(SESN) Based Services Awareness scheme in High-Speed PON(Passive Optical Network) .In this proposed scheme,the ring topology is adopted in the reservoir of SESN to reduce the complexity of original Echo State Network,and system dynamics equation is introduced to keep the accuracy of SESN.According to the network architecture of 10G-EPON,a SESN Master is running in the OLT and a number of SESN Agents work in ONUs.The SESN Master plays the main function of service-awareness from the total view of various kinds services in 10G-EPON system,by fully SESN training.Then,the reservoir information of well-trained SESN in OLT will be broadcasted to all ONUs and those SESN Agents working in ONUs are allowed to conducts independent service-awareness function.Thus,resources allocation and transport policy are both determined just only in ONUs.Simulation results show that the proposed mechanism is able to better supporting ability for multiple services.
基金financially supported by National Hi-tech Research and Development Program of China (863 Program, No. 2011AA01A106)
文摘Driven by ZTE and other telecom vendors and operators in order to meet the ever increasing bandwidth demand from fixed optical network users and mobile backhaul/fronthaul services, the latest next generation passive optical network (NG- PON2) is being standardized by Full Service Access Network (FSAN) and International Telecommunication Union (ITU-T) which consists of two separated sub-systems, hybrid time- and wavelength-division multiplexing PON (TWDM-PON) and point-to-point wavelength- division multiplex (PtP WDM). The TWDM-PON will be used for traditional residential, business and wireless backhaul services which are not sensitive to time delay and delay variation, whereas the PtP WDM is mainly used for emerging wireless fronthaul service which is very sensitive to the time delay and time delay variation. However, as a main international standards' contributor, ZTE thinks for those operators who offer multiple-level of services to both residential, business and mobile backhaul/fronthaul users, this obviously raises significant economic and power concerns by demanding to deploy two separated systems. Therefore, in this paper, for the first time, ZTE proposes a new converged optical and wireless integrated network architecture and topology by applying orthogonal frequency division multiplexing(OFDM) PON technology, which is able to simultaneously support residential, business and mobile backhaul/fronthaul services in terms of meeting the requirements of both time delay sensitive and non-sensitive services, and also address the economic and power concerns compared with conventional technologies. This architecture is further investigated and analyzed in depth on functional block, Quality-of-service (QoS), synchronization and deployment considerations. Also ZTE reports in this paper the first 40Gbps OFDM- PON prototype in which eight wavelengths each with 5Gbps Ethernet data via 10G-PON encapsulation method (X-GEM) and 10G-PON transmission convergence (X-GTC) framing are demonstrated.
基金supported by National Natural Science Foundation of China(No.61571061)Innovative Research Fund of Beijing University of Posts and Telecommunications (2015RC16)
文摘The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features such as rapid provisioning,automated protection and restoration(P&R),efficient resource allocation,and support for different quality of service(QoS) requirements.In this paper,we propose a novel stateful PCE-cloud(SPC)based architecture of GMPLS optical networks for cloud services.The cloud computing technologies(e.g.virtualization and parallel computing) are applied to the construction of SPC for improving the reliability and maximizing resource utilization.The functions of SPC and GMPLS based control plane are expanded according to the features of cloud services for different QoS requirements.The architecture and detailed description of the components of SPC are provided.Different potential cooperation relationships between public stateful PCE cloud(PSPC) and region stateful PCE cloud(RSPC) are investigated.Moreover,we present the policy-enabled and constraint-based routing scheme base on the cooperation of PSPC and RSPC.Simulation results for verifying the performance of routing and control plane reliability are analyzed.
基金ACKNOWLEDGEMENT This work was supported in part by the Na- tional Natural Science Foundation of China under Grants No. 61271192, No. 60932004 the National High Technology Research and Development of China (863 Program) under Grant No. 2013AA013401 and the National Basic Research Program of China under Grant No. 2013CB329204.
文摘Abstract: Real-time digital service and mul- timedia service upstream transmission in Dig- ital Signal Processing (DSP)-based Orthogo- nal Frequency Division Multiplexing-Passive Optical Network (OFDM-PON) is experimen- tally demonstrated with Centralised Light Sou- rce (CLS) configuration in this paper. After transmitted over 25 km Standard Single Mode Fibre (SSMF) with -16.5 dBm optical power at receiver, the Bit Error Rate (BER) is 9.5 ×10^-11. The implementations of digital domain up-conversion and down-conversion based on Field Programmable Gate Array (FPGA) are int- roduced, which can reduce the cost of In-ph- ase and Quadrature (IQ) radio frequency mix- ers utilised at transmitter and receiver. A car- rier synchronization algorithm is implemented for compensating carrier offset. A channel eq- ualization algorithm is adopted for compen- sating the damage of channel. A new structure of Frequency Synchronization Unit (FSU) des- igned in FPGA is also proposed to cope with the frequency shifting at receiver.
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2012CB315800the National Natural Science Foundation of China under Grants No.61275077,No.61071117,No.61171158,No.61102131+1 种基金the Natural Science Foundation Project of CQ,CSTC under GrantsNo.2009BB2285,No.2008BB2414,No.2010BB2413,No.2010BB2409,No.2010BB2413the Projects of the Education Council of Chongqing under Grants No.KJ080513,No.KJ080522,No.KJ110519,No.KJ110527
文摘Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for traffic and no longer change.The inflexible decision making of the traffic transfer mode leads to low resource utilization when the arrival rate of the OCS traffic is lower than the capacity of the light path.In this paper,a new transmission scheme is proposed to improve resource utilization for hybrid optical switching networks.When the traffic arrival rate of the light path is lower than the transmission rate of the light path,the OCS traffic flow is reshaped at the edge nodes to generate a series of voids.Then,several message packets are sent along the light path to inform the core nodes of the voids of the light paths that represent the unused bandwidth resources.To improve the resource utilization,the voids can be filled with data bursts by core nodes.The simulation results show that the new scheme can effectively reduce the burst loss rate and improve the link utilization of the hybrid optical switching network on the premise of a providing service quality guarantee for OCS traffic.