The authors discuss a discrete-time Geo/G/1 retrial queue with J-vacation policy and general retrial times.As soon as the orbit is empty,the server takes a vacation.However,the server is allowed to take a maximum numb...The authors discuss a discrete-time Geo/G/1 retrial queue with J-vacation policy and general retrial times.As soon as the orbit is empty,the server takes a vacation.However,the server is allowed to take a maximum number J of vacations,if the system remains empty after the end of a vacation.If there is at least one customer in the orbit at the end of a vacation,the server begins to serve the new arrivals or the arriving customers from the orbit.For this model,the authors focus on the steady-state analysis for the considered queueing system.Firstly,the authors obtain the generating functions of the number of customers in the orbit and in the system.Then,the authors obtain the closed-form expressions of some performance measures of the system and also give a stochastic decomposition result for the system size.Besides,the relationship between this discrete-time model and the corresponding continuous-time model is also investigated.Finally,some numerical results are provided.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.71071133
文摘The authors discuss a discrete-time Geo/G/1 retrial queue with J-vacation policy and general retrial times.As soon as the orbit is empty,the server takes a vacation.However,the server is allowed to take a maximum number J of vacations,if the system remains empty after the end of a vacation.If there is at least one customer in the orbit at the end of a vacation,the server begins to serve the new arrivals or the arriving customers from the orbit.For this model,the authors focus on the steady-state analysis for the considered queueing system.Firstly,the authors obtain the generating functions of the number of customers in the orbit and in the system.Then,the authors obtain the closed-form expressions of some performance measures of the system and also give a stochastic decomposition result for the system size.Besides,the relationship between this discrete-time model and the corresponding continuous-time model is also investigated.Finally,some numerical results are provided.