With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In ...With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In order to make a realization of that,new railway wireless communication networks are needed.The most promising one is the Long Term Evolution for Railway which will provide broadband access,fast handover,and reliable communication for high mobility users.However,with the increase of speed,the system is subjected to high bit error rate,Doppler frequency shift and handover failure just like other system does.This paper is trying to solve these problems by employing MIMO technique.Specifically,the goal is to provide higher data rate,higher reliability,less delay,and other relative quality of services for passengers.MIMO performance analysis,resource allocation,and access control for handover and various services in a two-hop model are proposed in this paper.Analytical results and simulation results show that the proposed model and schemes perform well in improving the system performances.展开更多
A class of networked control systems is investigated whose communication network is shared with other applications. The design objective for such a system setting is not only the optimization of the control performanc...A class of networked control systems is investigated whose communication network is shared with other applications. The design objective for such a system setting is not only the optimization of the control performance but also the efficient utilization of the communication resources. We observe that at a large time scale the data packet delay in the communication network is roughly varying piecewise constant, which is typically true for data networks like the Internet. Based on this observation, a dynamic data packing scheme is proposed within the recently developed packet-based control framework for networked control systems. As expected this proposed approach achieves a fine balance between the control performance and the communication utilization: the similar control performance can be obtained at dramatically reduced cost of the communication resources. Simulations illustrate the effectiveness of the proposed approach.展开更多
基金the support from NSFC under Grant 61222105the 863 Plan of China under Grant 2014AA01A706+3 种基金the project of State Key Lab under Grant RCS2012ZT013the Key Project of Chinese Ministry of Education under Grant 313006the Key Project for Railway Ministry of China under Grant 2012X008-Athe project of State Key Lab under Grant No. RCS2011ZZ002
文摘With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In order to make a realization of that,new railway wireless communication networks are needed.The most promising one is the Long Term Evolution for Railway which will provide broadband access,fast handover,and reliable communication for high mobility users.However,with the increase of speed,the system is subjected to high bit error rate,Doppler frequency shift and handover failure just like other system does.This paper is trying to solve these problems by employing MIMO technique.Specifically,the goal is to provide higher data rate,higher reliability,less delay,and other relative quality of services for passengers.MIMO performance analysis,resource allocation,and access control for handover and various services in a two-hop model are proposed in this paper.Analytical results and simulation results show that the proposed model and schemes perform well in improving the system performances.
基金supported by the National Natural Science Foundation of China(Grant Nos.6142230761174061&61304048)+4 种基金the Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of Chinathe National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2014AA06A503)the Youth Innovation Promotion Association,Chinese Academy of Sciences,in part by the Youth Top-Notch Talent Support Programthe 1000-Talent Youth ProgramZhejiang 1000-Talent Program
文摘A class of networked control systems is investigated whose communication network is shared with other applications. The design objective for such a system setting is not only the optimization of the control performance but also the efficient utilization of the communication resources. We observe that at a large time scale the data packet delay in the communication network is roughly varying piecewise constant, which is typically true for data networks like the Internet. Based on this observation, a dynamic data packing scheme is proposed within the recently developed packet-based control framework for networked control systems. As expected this proposed approach achieves a fine balance between the control performance and the communication utilization: the similar control performance can be obtained at dramatically reduced cost of the communication resources. Simulations illustrate the effectiveness of the proposed approach.