期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于计量模型的中国网络广告市场规模影响因素分析
1
作者 杨佳伟 华长生 +3 位作者 朱定品 赵甜甜 许娟 胡龙 《消费导刊》 2013年第3期23-24,共2页
网络广告市场规模是衡量当下网络经济发展状况的一个重要指标,文章从国内生产总值、网民的数量、广告主的数量、网站规模以及居民价格消费指数等五个方面出发,采用逐步回归法,建立了中国网络广告市场规模影响因素的基本计量模型。通... 网络广告市场规模是衡量当下网络经济发展状况的一个重要指标,文章从国内生产总值、网民的数量、广告主的数量、网站规模以及居民价格消费指数等五个方面出发,采用逐步回归法,建立了中国网络广告市场规模影响因素的基本计量模型。通过拉格朗日乘数捡验方法得到模型无自相关性之后,再对其结果作相应经济分析及相关预测。 展开更多
关键词 网络广告 计量模型 市场规模 朗格朗日乘数
下载PDF
Accelerated Matrix Recovery via Random Projection Based on Inexact Augmented Lagrange Multiplier Method 被引量:4
2
作者 王萍 张楚涵 +1 位作者 蔡思佳 李林昊 《Transactions of Tianjin University》 EI CAS 2013年第4期293-299,共7页
In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by ad... In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000. 展开更多
关键词 matrix recovery random projection robust principal component analysis matrix completion outlier pursuit inexact augmented Lagrange multiplier method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部