期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于因子分析的隐马尔可夫模型及其训练算法
被引量:
3
1
作者
王新民
姚天任
《计算机工程与应用》
CSCD
北大核心
2004年第15期79-81,共3页
虽然基于对角协方差矩阵高斯分布的隐马尔可夫模型(HiddenMarkovModelBasedonDiagonalGaussiandistributions,HMM-DG)目前在现代大词表连续语音识别系统中得到了广泛的应用,但HMM-DG在帧内特征相关(intra-framefeaturescorrelation)建...
虽然基于对角协方差矩阵高斯分布的隐马尔可夫模型(HiddenMarkovModelBasedonDiagonalGaussiandistributions,HMM-DG)目前在现代大词表连续语音识别系统中得到了广泛的应用,但HMM-DG在帧内特征相关(intra-framefeaturescorrelation)建模方面存在缺陷。该文将因子分析方法与HMM-DG的混合高斯建模相结合,提出了一种具有弹性的帧内特征相关隐马尔可夫模型框架—基于因子分析的隐马尔可夫模型(HiddenMarkovModelBasedonFactorAnalysis,HMM-FA),并导出了HMM-FA的训练算法。仿真实验表明:在相同的条件下,HMM-FA的性能优于HMM-DG。
展开更多
关键词
隐马尔可夫模型
因子分析
期望一最大化算法
下载PDF
职称材料
题名
基于因子分析的隐马尔可夫模型及其训练算法
被引量:
3
1
作者
王新民
姚天任
机构
孝感学院物理系
华中科技大学电信系
出处
《计算机工程与应用》
CSCD
北大核心
2004年第15期79-81,共3页
基金
湖北省教育厅重点项目基金资助(编号:2002A02004)
文摘
虽然基于对角协方差矩阵高斯分布的隐马尔可夫模型(HiddenMarkovModelBasedonDiagonalGaussiandistributions,HMM-DG)目前在现代大词表连续语音识别系统中得到了广泛的应用,但HMM-DG在帧内特征相关(intra-framefeaturescorrelation)建模方面存在缺陷。该文将因子分析方法与HMM-DG的混合高斯建模相结合,提出了一种具有弹性的帧内特征相关隐马尔可夫模型框架—基于因子分析的隐马尔可夫模型(HiddenMarkovModelBasedonFactorAnalysis,HMM-FA),并导出了HMM-FA的训练算法。仿真实验表明:在相同的条件下,HMM-FA的性能优于HMM-DG。
关键词
隐马尔可夫模型
因子分析
期望一最大化算法
Keywords
hidden Markov model,factor analysis,Expectation-Maximization(EM)algorithm
分类号
TN911.7 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于因子分析的隐马尔可夫模型及其训练算法
王新民
姚天任
《计算机工程与应用》
CSCD
北大核心
2004
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部