期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
一个新的期望恒等式及其在正态预测势计算中的应用
1
作者 张应应 荣腾中 李曼曼 《应用概率统计》 CSCD 北大核心 2020年第5期523-535,共13页
为了计算预测势,我们建议使用一个简洁的期望恒等式来直接计算期望值.我们计算了具有非零阈值的假设对五种不同类型的预测势,即具有经典势和贝叶斯势的非序贯试验,以及混合预测、贝叶斯预测和经典预测的序贯试验.此外,通过三个例子说明... 为了计算预测势,我们建议使用一个简洁的期望恒等式来直接计算期望值.我们计算了具有非零阈值的假设对五种不同类型的预测势,即具有经典势和贝叶斯势的非序贯试验,以及混合预测、贝叶斯预测和经典预测的序贯试验.此外,通过三个例子说明了各种预测势的计算.最后,在计算文献[9]中的平均成功概率时,很难找到预测势的预测分布,而利用期望恒等式进行计算是很简单的. 展开更多
关键词 期望等式 预测势 正态模型 单边假设 平均成功概率
下载PDF
向量值鞅变换算子加权条件矩不等式及其应用
2
作者 张永 于林 《济南大学学报(自然科学版)》 CAS 2007年第1期78-81,共4页
证明加权条件下Banach值鞅变换算子的极大函数、p阶均方函数条件矩不等式;作为应用,给出了鞅变换算子的极大函数,p阶均方函数的加权Φ型不等式,并且与Ba-nach空间的一致凸性和一致光滑性联系起来。
关键词 鞅变换 加权条件期望等式 P一致光滑性 q- 致凸性
下载PDF
论“财富转移的弱势效应”及对当前我国扩大内需的思考 被引量:1
3
作者 刘义成 徐轶瑛 《经济体制改革》 CSSCI 北大核心 2009年第6期28-31,共4页
一直以来,政府在实现全社会公共服务尤其是基本公共服务均等化方面做了大量的工作,取得了不小的成绩,而这很大程度上是依靠财力或财富在社会各群体之间的转移实现的。但这个"财富转移"在实施过程中仍出现了各种问题,产生了&qu... 一直以来,政府在实现全社会公共服务尤其是基本公共服务均等化方面做了大量的工作,取得了不小的成绩,而这很大程度上是依靠财力或财富在社会各群体之间的转移实现的。但这个"财富转移"在实施过程中仍出现了各种问题,产生了"财富转移的弱势效应"现象。要规避该效应进而促进扩大内需,必须从减小财富转移的弱势效应,扩大弱势群体收入着手:一是完善弱势群体利益代表机制,强化其利益诉求行为的组织化;二是多渠道扩展弱势群体利益表达机制;三是加强法制化建设,做好弱势群体利益诉求的法律保护机制建设工作;四是构建和完善维护弱势群体利益的政府行政责任体系;五是加强教育和引导,提高弱势群体的素养。 展开更多
关键词 财富转移 弱势效应 成本期望等式 扩大内需
原文传递
Jensen's Inequality for Backward Stochastic Differential Equations 被引量:10
4
作者 Long JIANG Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China School of Mathematical Sciences, Fudan University, Shanghai 200433, China School of Mathematics and System Sciences, Shandong University, Jinan 250100, China. 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2006年第5期553-564,共12页
Under the Lipschitz assumption and square integrable assumption on g, the author proves that Jensen's inequality holds for backward stochastic differential equations with generator g if and only if g is independent o... Under the Lipschitz assumption and square integrable assumption on g, the author proves that Jensen's inequality holds for backward stochastic differential equations with generator g if and only if g is independent of y, g(t, 0)≡ 0 and g is super homogeneous with respect to z. This result generalizes the known results on Jensen's inequality for gexpectation in [4, 7-9]. 展开更多
关键词 Backward stochastic differential equation G-EXPECTATION Jensen's inequality for g-expectation Jensen's inequality for BSDEs
原文传递
ON JENSEN'S INEQUALITY FOR g-EXPECTATION 被引量:26
5
作者 JIANG LONG CHEN ZENGJING School of Mathematics and System Sciences, Shandong University, Jinan 250100, China. Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, Jiangsu,China. E-mail: jianglong@math.sdu.edu.cn School of Mathematics and System Sciences, Shandong University, Jinan 250100, China. 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2004年第3期401-412,共12页
Briand et al. gave a counterexample showing that given g, Jensen's inequality for g-expectation usually does not hold in general This paper proves that Jensen's inequality for g-expectation holds in general if... Briand et al. gave a counterexample showing that given g, Jensen's inequality for g-expectation usually does not hold in general This paper proves that Jensen's inequality for g-expectation holds in general if and only if the generator g (t, z) is super-homogeneous in z. In particular, g is not necessarily convex in z. 展开更多
关键词 Backward stochastic differential equation Jensen's inequality g-expectaation Conditional g-expectation Comparison theorem
原文传递
Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications 被引量:50
6
作者 ZHANG LiXin 《Science China Mathematics》 SCIE CSCD 2016年第4期751-768,共18页
Classical Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of random variables are basic tools for studying the strong laws of large numbers.In this paper,motived by the notion of indepen... Classical Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of random variables are basic tools for studying the strong laws of large numbers.In this paper,motived by the notion of independent and identically distributed random variables under the sub-linear expectation initiated by Peng(2008),we introduce the concept of negative dependence of random variables and establish Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of negatively dependent random variables under the sub-linear expectations.As an application,we show that Kolmogorov's strong law of larger numbers holds for independent and identically distributed random variables under a continuous sub-linear expectation if and only if the corresponding Choquet integral is finite. 展开更多
关键词 sub-linear expectation capacity Kolmogorov's inequality Rosenthal's inequality negative dependence strong laws of large numbers
原文传递
Quantum Violations of N-Qubit Svetlichny's Inequalities are Tightly Bound by the Exclusivity Principle
7
作者 向阳 《Communications in Theoretical Physics》 SCIE CAS CSCD 2015年第2期141-144,共4页
We first present, by using exclusivity principle, a brief proof of the complementarity principle: the sum of squared expectation values of dichotomic (5:1) mutually complementary observables can not be greater tha... We first present, by using exclusivity principle, a brief proof of the complementarity principle: the sum of squared expectation values of dichotomic (5:1) mutually complementary observables can not be greater than 1. Then we prove that the complementarity principle yields tight quantum bounds of violations of N-qubit Svetlichny's inequalities. This result not only demonstrates that exclusivity principle can give tight quantum bound for certain type of genuine multipartite correlations, but also illustrates the subtle relationship between quantum complementarity and quantum genuine multipartite correlations. 展开更多
关键词 Svetlichny's inequality exclusivity principle complementary principle genuine multipartite cor-relation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部