To study the chemical constituents of Sappan Lignum. Chemical constituents were isolated by method of solvent extraction, repeated chromatography with silica gel, Sephadex LH-20, and ODS. The structures were elucidate...To study the chemical constituents of Sappan Lignum. Chemical constituents were isolated by method of solvent extraction, repeated chromatography with silica gel, Sephadex LH-20, and ODS. The structures were elucidated based on spectro- scopic data. Fourteen compounds were isolated and their structures were identified as brazilin (1), sappanone B (2), (E)-3-(3,4- dihydroxybenzylidene)-7-hydroxychroman-4-one (3), 3-deoxysappanone B (4), brazilide A (5), euxanthone (6), quercetin (7), rhamnetin (8), sappanchalcone (9), 3-deoxysappanchalcone (10), butein (11), 2,4,5-trihydroxybenzaldehyde (12), 3,8,9-trihydroxy- 6H-benzo[c]chromen-6-one (13) and 13-sitosterol (14). Compounds 12 and 13 were two new natural compounds, and the ^13C NMR data of compound 13 were reported for the first time. Compound 6 was the first xanthone isolated from the genus Caesalpinia.展开更多
Allelochemicals of Chinese-fir root was extracted by technology ofsupercritical CO_2 extraction under orthogonal experiment design, and it was used to analyzeallelopathic activity of Chinese-fir through bioassay of se...Allelochemicals of Chinese-fir root was extracted by technology ofsupercritical CO_2 extraction under orthogonal experiment design, and it was used to analyzeallelopathic activity of Chinese-fir through bioassay of seed germination. The results showed thatas to the available rate of allelochemicals, the pressure and temperature of extraction were themost important factors. The allelochemicals of Chinese-fir root extracted by pure CO_2 and ethanolmixed with CO_2 have different allelopathic activities to seed germination, and the allelochemicalsextracted by ethanol mixed with CO_2 had stronger inhibitory effects on seed germination than thatextracted by pure CO_2.展开更多
Aim To study the chemical constituents from the stems of Xylosma controversum Clos. Methods The constituents were isolated by solvent extraction, repeated chromatography with silica gel, Sephadex LH-20, and RP-18 colu...Aim To study the chemical constituents from the stems of Xylosma controversum Clos. Methods The constituents were isolated by solvent extraction, repeated chromatography with silica gel, Sephadex LH-20, and RP-18 columns. The structures were elucidated by spectral analysis. Results Thirteen compounds were isolated and their structures were identified as (-)-syringaresinol (1), syringaresinol-4-O-β-D-glucopyranoside (2), syringaresinol-4,4′-bis-O-β-D-glucopyranoside (3), (±)-catechin (4), catechin-3-O- β-D-glucopyranoside (5), catechin-5-O-β-D-glucopyranoside (6), 1,3-bis-(4-hydroxy-3,5-dimethoxyphenyl)-1,3-propanediol (7), (R)-(+)-chaulmoogric acid (8), friedelin (9), uracile (10), benzoic acid (11), vaniUic acid (12), and 4-hydroxybenzoic acid (13). Conclusion All the compounds described above were isolated from this genus for the first time.展开更多
By means of X ray and gas chromatography analysis, the crystalline structure of untreated wood , alkali treated wood and benzylated wood and their liquefaction in toluene and tetrahydrofufan with HCl as a catalyst we...By means of X ray and gas chromatography analysis, the crystalline structure of untreated wood , alkali treated wood and benzylated wood and their liquefaction in toluene and tetrahydrofufan with HCl as a catalyst were studied .The upper solution of benzylated wood was also studied by GC MS analysis. It proved that the introduction of bulky benzyl group in wood significantly changed the crystalline structure of wood ,enlarging the free volume which facilitated the penetration of solvent into the matrix of treated wood, thus tremendously enhancing thesolubility in solvent,compared to untreated wood and alkali treated wood. The percentage of residue decreased and the combined solvent increased with the increase of weight gain revealed that the liquefaction process became easy. Furthermore, the factors that influenced the liquefaction of benzylated wood were investigated. It showed that the liquefaction performance was improved with the increase of liquefaction time and the amount of catalyst when toluene was used as a solvent, especially in the presence of THF as solvent, there existed the optimum liquefaction time and the amount of catalyst .展开更多
A study was conducted to identify the differences in the decompositions of leaf litter, lignin and carbohydrate between coniferous forest and broadleaf forest at 20℃ and 30℃ in Huangshan Mountain, Anhui Province, Ch...A study was conducted to identify the differences in the decompositions of leaf litter, lignin and carbohydrate between coniferous forest and broadleaf forest at 20℃ and 30℃ in Huangshan Mountain, Anhui Province, China. Results showed that at 20℃ mass loss of leaf litter driven by microbial decomposers was higher in broadleaf forest than that in coniferous forest, whereas the difference in mass loss of leaf litter was not significant at 30℃. The temperature increase did not affect the mass loss of leaf litter for coniferous forest treatment, but significantly reduced the decomposition rate for broadleaf forest treatment. The functional decomposers of microorganism in broadleaf forest produced a higher lignin decomposition rate at 20℃, compared to that in coniferous forest, but the difference in lignin decomposition was not found between two forest types at 30℃. Improved temperature increased the lignin decomposition for both broadleaf and coniferous forest. Additionally, the functional group of microorganism from broadleaf forest showed marginally higher carbohydrate loss than that from coniferous forest at both temperatures. Temperature increase reduced the carbohydrate decomposition for broadleaf forest, while only a little reduce was found for coniferous forest. Remarkable differences occurred in responses between most enzymes (Phenoloxidase, peroxidase, !5-glucosidase and endocellulase) and decomposition rate of leaf litter to forest type and temperature, although there exist strong relationships between measured enzyme activities and decomposition rate in most cases. The reason is that more than one enzyme contribute to the mass loss of leaf litter and organic chemical components. In conclusion, at a community scale the coniferous and broadleaf forests differed in their temperature-decomposition relationships.展开更多
[Objective] The purpose of this study was to determine the effect of chitosan with different molecular weights on quality and lignification of postharvest Chi- nese chive scapes (Allium tuberosum Rottler ex Sprengel...[Objective] The purpose of this study was to determine the effect of chitosan with different molecular weights on quality and lignification of postharvest Chi- nese chive scapes (Allium tuberosum Rottler ex Sprengel). [Method] Some physio- logical and biochemical indexes such as weight loss, decay index, opening rate of flowers, chlorophyll and ascorbic acid content, respiration rate, the activities of enzymes, lignin and cellulose content of Chinese chive scapes treated with three kinds of chitosan with different molecular weights were investigated during the room stor- age at 20 ℃ to simulate shelf life. [Result] The results showed that all the treat- ments of chitosan with different molecular weights significantly delayed weight loss, decay index and opening rate of flowers, maintained higher chlorophyll and ascorbic acid content, inhibited respiration rate, reduced the activities of enzymes phenylala- nine ammonia lyase, cinnamyl alcohol dehydrogenase and peroxidase, and retarded lignin and cellulose accumulation during the storage of Chinese chive scapes. However, high molecular weight chitosan has better preservation effect on Chinese chive scapes. [Conclusion] The results suggest that the coating treatment of high molecu- lar weight chitosan may be a promising technique to maintain postharvest quality of Chinese chive scapes.展开更多
The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid a...The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid as a catalyst. After the liquefied products were cooled, alkaline catalyst and formaldehyde were added. The mixture was kept at (60?) C for 1h and then was heated to (85?) C for 1h. The influence of molar ratio of formaldehyde to phenol (F/P) was investigated. The results showed when the molar ratio of formaldehyde to phenol was over 1.8, the PWF adhesives had high bond quality, bond durability and extremely low aldehydes emissions.展开更多
The ultracytochemical localization of ATPase in the secondary xylem cells during their differentiation and dedifferentiation in the girdled Eucommia ulmoides Oliv. was carried out using a lead phosphate precipitation ...The ultracytochemical localization of ATPase in the secondary xylem cells during their differentiation and dedifferentiation in the girdled Eucommia ulmoides Oliv. was carried out using a lead phosphate precipitation technique. Throughout the differentiation, which is a typical programmed cell death (PCD) process, ATPase deposits increased in the nucleus but decreased and progressively disappeared in the cell organelles. At the same time, the distribution of ATPase increased in the inner face of the cell wall and pits with cytoplasmic degeneration. The results demonstrated that the PCD was an energy dependent active process and was controlled by nuclear genes. On the other hand, the distribution of ATPase in the intercellular spaces increased with the formation of the new cambium resulted from the dedifferentiation of the secondary xylem cells after girdling. However, ATPase was not found in the nucleus of the dividing cells, suggesting that nutrients were transported through protoplast during differentiation, and through both protoplast and apoplast during dedifferentiation. Thus, the energy required in cell division was provided mainly by intercellular spaces. These findings indicate that the dynamic distribution of ATPase reflected which cell component was actively taking part in the cell metabolism at various stages of the plant development, and its distribution was associated with the physiological state of the cell. Based on the characteristic distributions of ATPase, the critical stage of cell differentiation and the relationship between the critical stage and dedifferentiation were discussed.展开更多
A study of the storage dynamics in the mixed broadleaved and Korean pine forests was carried out in the Changbai Mountains, Jilin Province, P. R. China. The modifying law of fallen trees was the storage dynamics of th...A study of the storage dynamics in the mixed broadleaved and Korean pine forests was carried out in the Changbai Mountains, Jilin Province, P. R. China. The modifying law of fallen trees was the storage dynamics of the existing fallen trees and the annual input in the mixed broadleaved and Korean pine forest. The current storage of fallen trees was 16.25 t昲m-2 in the initially, but after 100 years, 85% of the storage in dry weight was decomposed, and little material was left after 300 years. The average annual input of fallen trees was 0.6 t昲m-2and it increased with time to 31.0 t昲m-2after 200 years, which was maintained until the climax community ended. The total storage of fallen trees increased in the early stage. The decomposition of fallen trees eventually reached equilibrium with storage being identical with the annual input of fallen trees.展开更多
The optimum models of harvesting yield and net profits of large diameter trees for broadleaved forest were developed, of which include matrix growth sub-model, harvesting cost and wood price sub-models, based on the d...The optimum models of harvesting yield and net profits of large diameter trees for broadleaved forest were developed, of which include matrix growth sub-model, harvesting cost and wood price sub-models, based on the data from Hongshi Forestry Bureau, in Changbai Mountain region, Jilin Province, China. The data were measured in 232 permanent sample plots. With the data of permanent sample plots, the parameters of transition probability and ingrowth models were estimated, and some models were compared and partly modified. During the simulation of stand structure, four factors such as largest diameter residual tree (LDT), the ratio of the number of trees in a given diameter class to those in the next larger diameter class (q), residual basal area (RBA) and selective cutting cycle (C) were considered. The simulation results showed that the optimum stand structure parameters for large diameter trees are as follows: q is 1.2, LDT is 46cm, RBA is larger than 26 m^2 and selective cutting cycle time (C) is between 10 and 20 years.展开更多
The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst prop- erties, including acidity, pore si...The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst prop- erties, including acidity, pore size and supported metal on hydrocracking of pyrolytic lignin in supercritical ethanol and hydrogen were investigated at 260 ℃. A series of catalysts were prepared and characterized by BET, XRD, and NHa-TPD techniques. The results showed that enhancing the acidity of the catalyst without metal can promote pyrolytic lignin poly- merization to form more solid and condensation to produce more water. The pore size of microporous catalyst was smaller than mesoporous catalyst. Together with strong acid- ity, it caused pyrolytic lignin further hydrocrack to numerous gas. Introducing Ru into acidic catalysts promoted pyrolytic lignin hydrocracking and inhibited the polymerization and condensation, which caused the yield of pyrolytic lignin liquefaction product to increase significantly. Therefore, bifunctional catalyst with high hydrocracking activity metal Ru supported on materials with acidic sites and mesopores was imperative to get satisfactory results for the conversion of pyrolytic lignin to liquid products under supercritical conditions and hydrogen atmosphere.展开更多
The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet...The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet light microscopy and transmission electron microscopy combined with immunogold labelling. In the cambial zone and cell expansion zone, xyloglucans were localized both in the tangential and radial walls, but no xylans or lignin were found in these regions. With the formation of secondary wall S-1 layer, lignin occurred in the cell corners and middle lamella, while xylans appeared in S-1 layer, and xyloglucans were localized in the primary walls and middle lamella. In pace with the formation of secondary wall S-2 and S-3 layer, lignification extended to S-1, S-2 and S-3 layer in sequence, showing a patchy style of lignin deposition. Concurrently, xylans distributed in the whole secondary walls and xyloglucans, on the other hand, still localized in the primary walls and middle lamella. The results indicated that along with the formation and lignification of the secondary wall, great changes had taken place in the cell walls. Different parts of cell walls, such as cell corners, middle lamella, primary walls and various layers of secondary walls, had different kinds of hemicelluloses, which formed various cell wall architecture combined with lignin and other cell wall components.展开更多
A new lignan, together with a known one, was isolated from Isodon lophanthoides var. gerardianus [Bentham] H. Hara. The structure of the new lignan was elucidated as 1_acetoxyl_2e_piperonyl_6e_[6_methoxyl_pi...A new lignan, together with a known one, was isolated from Isodon lophanthoides var. gerardianus [Bentham] H. Hara. The structure of the new lignan was elucidated as 1_acetoxyl_2e_piperonyl_6e_[6_methoxyl_piperonyl]_3,7_dioxabicyclo_[3,3,0]_octane mainly by 1D and 2D NMR techniques.展开更多
The developmental process of oil cells in the shoot of Litsea pungens Hemsl. has been studied with transmission electron microscopy. According to the development of the three layers of cell wall, the developmental pro...The developmental process of oil cells in the shoot of Litsea pungens Hemsl. has been studied with transmission electron microscopy. According to the development of the three layers of cell wall, the developmental process could be divided into 4 stages. In stage 1, the cell wall consisted only of a primary (the outmost) cellulose layer, which might further be divided into two substages, the oil cell initial, and the vacuolizing oil cell. During this stage, there were some small electron translucent vesicles and dark osmiophilic droplets of variant sizes in the different-shaped plastids. It was observed that some dark and gray osmiophilic materials coalesced to vacuoles in the cytoplasm. In stage 2, a lamellated suberin layer accumulated inside the primary cellulose layer. In stage 3, a thicker and looser inner cellulose wall layer was formed gradually inside the suberin layer. Some dark osmiophilic droplets have been observed in this loose inner cellulose wall layer. The plasmodesmata were blocked up and became a special structure. Then, the big vacuole, which is the oil sac, was full of osmiophilic oil. In stage 4, the oil cell became matured and the cytoplasm disintegrated. The oil sac enveloped from plasmalemma was attached to the cupule, which was formed by the protuberance of the inner cellulose wall layer into the lumen. After the maturity of oil cell, the ground cytoplasm began to disintegrate and became electron opaque or exhibited in a disordered state, and the osmiophilic oil appeared light gray.展开更多
文摘To study the chemical constituents of Sappan Lignum. Chemical constituents were isolated by method of solvent extraction, repeated chromatography with silica gel, Sephadex LH-20, and ODS. The structures were elucidated based on spectro- scopic data. Fourteen compounds were isolated and their structures were identified as brazilin (1), sappanone B (2), (E)-3-(3,4- dihydroxybenzylidene)-7-hydroxychroman-4-one (3), 3-deoxysappanone B (4), brazilide A (5), euxanthone (6), quercetin (7), rhamnetin (8), sappanchalcone (9), 3-deoxysappanchalcone (10), butein (11), 2,4,5-trihydroxybenzaldehyde (12), 3,8,9-trihydroxy- 6H-benzo[c]chromen-6-one (13) and 13-sitosterol (14). Compounds 12 and 13 were two new natural compounds, and the ^13C NMR data of compound 13 were reported for the first time. Compound 6 was the first xanthone isolated from the genus Caesalpinia.
基金This paper was supported by Natural Science Foundation of Fujian Province (B0010020)
文摘Allelochemicals of Chinese-fir root was extracted by technology ofsupercritical CO_2 extraction under orthogonal experiment design, and it was used to analyzeallelopathic activity of Chinese-fir through bioassay of seed germination. The results showed thatas to the available rate of allelochemicals, the pressure and temperature of extraction were themost important factors. The allelochemicals of Chinese-fir root extracted by pure CO_2 and ethanolmixed with CO_2 have different allelopathic activities to seed germination, and the allelochemicalsextracted by ethanol mixed with CO_2 had stronger inhibitory effects on seed germination than thatextracted by pure CO_2.
基金Program for Changjiang Scholar and InnovativeTeam in Peking University (Grant number: 985-2-063-112).
文摘Aim To study the chemical constituents from the stems of Xylosma controversum Clos. Methods The constituents were isolated by solvent extraction, repeated chromatography with silica gel, Sephadex LH-20, and RP-18 columns. The structures were elucidated by spectral analysis. Results Thirteen compounds were isolated and their structures were identified as (-)-syringaresinol (1), syringaresinol-4-O-β-D-glucopyranoside (2), syringaresinol-4,4′-bis-O-β-D-glucopyranoside (3), (±)-catechin (4), catechin-3-O- β-D-glucopyranoside (5), catechin-5-O-β-D-glucopyranoside (6), 1,3-bis-(4-hydroxy-3,5-dimethoxyphenyl)-1,3-propanediol (7), (R)-(+)-chaulmoogric acid (8), friedelin (9), uracile (10), benzoic acid (11), vaniUic acid (12), and 4-hydroxybenzoic acid (13). Conclusion All the compounds described above were isolated from this genus for the first time.
文摘By means of X ray and gas chromatography analysis, the crystalline structure of untreated wood , alkali treated wood and benzylated wood and their liquefaction in toluene and tetrahydrofufan with HCl as a catalyst were studied .The upper solution of benzylated wood was also studied by GC MS analysis. It proved that the introduction of bulky benzyl group in wood significantly changed the crystalline structure of wood ,enlarging the free volume which facilitated the penetration of solvent into the matrix of treated wood, thus tremendously enhancing thesolubility in solvent,compared to untreated wood and alkali treated wood. The percentage of residue decreased and the combined solvent increased with the increase of weight gain revealed that the liquefaction process became easy. Furthermore, the factors that influenced the liquefaction of benzylated wood were investigated. It showed that the liquefaction performance was improved with the increase of liquefaction time and the amount of catalyst when toluene was used as a solvent, especially in the presence of THF as solvent, there existed the optimum liquefaction time and the amount of catalyst .
基金This study was supported by National Natural Sci-ence Foundation of China (30470299)Key Project of National Sci-ence Foundation of China (30430570).
文摘A study was conducted to identify the differences in the decompositions of leaf litter, lignin and carbohydrate between coniferous forest and broadleaf forest at 20℃ and 30℃ in Huangshan Mountain, Anhui Province, China. Results showed that at 20℃ mass loss of leaf litter driven by microbial decomposers was higher in broadleaf forest than that in coniferous forest, whereas the difference in mass loss of leaf litter was not significant at 30℃. The temperature increase did not affect the mass loss of leaf litter for coniferous forest treatment, but significantly reduced the decomposition rate for broadleaf forest treatment. The functional decomposers of microorganism in broadleaf forest produced a higher lignin decomposition rate at 20℃, compared to that in coniferous forest, but the difference in lignin decomposition was not found between two forest types at 30℃. Improved temperature increased the lignin decomposition for both broadleaf and coniferous forest. Additionally, the functional group of microorganism from broadleaf forest showed marginally higher carbohydrate loss than that from coniferous forest at both temperatures. Temperature increase reduced the carbohydrate decomposition for broadleaf forest, while only a little reduce was found for coniferous forest. Remarkable differences occurred in responses between most enzymes (Phenoloxidase, peroxidase, !5-glucosidase and endocellulase) and decomposition rate of leaf litter to forest type and temperature, although there exist strong relationships between measured enzyme activities and decomposition rate in most cases. The reason is that more than one enzyme contribute to the mass loss of leaf litter and organic chemical components. In conclusion, at a community scale the coniferous and broadleaf forests differed in their temperature-decomposition relationships.
基金Supported by Jiangsu Agriculture Science and Technology Innovation Fund[CX(11)4056]Strategic Key Project of Jiangsu Provincial Science and Technology Development(BE 2012417)~~
文摘[Objective] The purpose of this study was to determine the effect of chitosan with different molecular weights on quality and lignification of postharvest Chi- nese chive scapes (Allium tuberosum Rottler ex Sprengel). [Method] Some physio- logical and biochemical indexes such as weight loss, decay index, opening rate of flowers, chlorophyll and ascorbic acid content, respiration rate, the activities of enzymes, lignin and cellulose content of Chinese chive scapes treated with three kinds of chitosan with different molecular weights were investigated during the room stor- age at 20 ℃ to simulate shelf life. [Result] The results showed that all the treat- ments of chitosan with different molecular weights significantly delayed weight loss, decay index and opening rate of flowers, maintained higher chlorophyll and ascorbic acid content, inhibited respiration rate, reduced the activities of enzymes phenylala- nine ammonia lyase, cinnamyl alcohol dehydrogenase and peroxidase, and retarded lignin and cellulose accumulation during the storage of Chinese chive scapes. However, high molecular weight chitosan has better preservation effect on Chinese chive scapes. [Conclusion] The results suggest that the coating treatment of high molecu- lar weight chitosan may be a promising technique to maintain postharvest quality of Chinese chive scapes.
文摘The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid as a catalyst. After the liquefied products were cooled, alkaline catalyst and formaldehyde were added. The mixture was kept at (60?) C for 1h and then was heated to (85?) C for 1h. The influence of molar ratio of formaldehyde to phenol (F/P) was investigated. The results showed when the molar ratio of formaldehyde to phenol was over 1.8, the PWF adhesives had high bond quality, bond durability and extremely low aldehydes emissions.
文摘The ultracytochemical localization of ATPase in the secondary xylem cells during their differentiation and dedifferentiation in the girdled Eucommia ulmoides Oliv. was carried out using a lead phosphate precipitation technique. Throughout the differentiation, which is a typical programmed cell death (PCD) process, ATPase deposits increased in the nucleus but decreased and progressively disappeared in the cell organelles. At the same time, the distribution of ATPase increased in the inner face of the cell wall and pits with cytoplasmic degeneration. The results demonstrated that the PCD was an energy dependent active process and was controlled by nuclear genes. On the other hand, the distribution of ATPase in the intercellular spaces increased with the formation of the new cambium resulted from the dedifferentiation of the secondary xylem cells after girdling. However, ATPase was not found in the nucleus of the dividing cells, suggesting that nutrients were transported through protoplast during differentiation, and through both protoplast and apoplast during dedifferentiation. Thus, the energy required in cell division was provided mainly by intercellular spaces. These findings indicate that the dynamic distribution of ATPase reflected which cell component was actively taking part in the cell metabolism at various stages of the plant development, and its distribution was associated with the physiological state of the cell. Based on the characteristic distributions of ATPase, the critical stage of cell differentiation and the relationship between the critical stage and dedifferentiation were discussed.
基金Supported by NKBRSF (Grant No. G1999043407) the Institute of Applied Ecology (grant No. SCXZD0101)+2 种基金 CAS the National Natural Science Foundation of China (NSFC39970123) and by the Changbai Mountain Open Research Station.
文摘A study of the storage dynamics in the mixed broadleaved and Korean pine forests was carried out in the Changbai Mountains, Jilin Province, P. R. China. The modifying law of fallen trees was the storage dynamics of the existing fallen trees and the annual input in the mixed broadleaved and Korean pine forest. The current storage of fallen trees was 16.25 t昲m-2 in the initially, but after 100 years, 85% of the storage in dry weight was decomposed, and little material was left after 300 years. The average annual input of fallen trees was 0.6 t昲m-2and it increased with time to 31.0 t昲m-2after 200 years, which was maintained until the climax community ended. The total storage of fallen trees increased in the early stage. The decomposition of fallen trees eventually reached equilibrium with storage being identical with the annual input of fallen trees.
基金This paper was supported by National Strategy Key Project, Research and Paradigm on Ecological Harvesting and Regeneration Tech-nique for Northeast Natural Forest (2001BA510B07-02)
文摘The optimum models of harvesting yield and net profits of large diameter trees for broadleaved forest were developed, of which include matrix growth sub-model, harvesting cost and wood price sub-models, based on the data from Hongshi Forestry Bureau, in Changbai Mountain region, Jilin Province, China. The data were measured in 232 permanent sample plots. With the data of permanent sample plots, the parameters of transition probability and ingrowth models were estimated, and some models were compared and partly modified. During the simulation of stand structure, four factors such as largest diameter residual tree (LDT), the ratio of the number of trees in a given diameter class to those in the next larger diameter class (q), residual basal area (RBA) and selective cutting cycle (C) were considered. The simulation results showed that the optimum stand structure parameters for large diameter trees are as follows: q is 1.2, LDT is 46cm, RBA is larger than 26 m^2 and selective cutting cycle time (C) is between 10 and 20 years.
文摘The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst prop- erties, including acidity, pore size and supported metal on hydrocracking of pyrolytic lignin in supercritical ethanol and hydrogen were investigated at 260 ℃. A series of catalysts were prepared and characterized by BET, XRD, and NHa-TPD techniques. The results showed that enhancing the acidity of the catalyst without metal can promote pyrolytic lignin poly- merization to form more solid and condensation to produce more water. The pore size of microporous catalyst was smaller than mesoporous catalyst. Together with strong acid- ity, it caused pyrolytic lignin further hydrocrack to numerous gas. Introducing Ru into acidic catalysts promoted pyrolytic lignin hydrocracking and inhibited the polymerization and condensation, which caused the yield of pyrolytic lignin liquefaction product to increase significantly. Therefore, bifunctional catalyst with high hydrocracking activity metal Ru supported on materials with acidic sites and mesopores was imperative to get satisfactory results for the conversion of pyrolytic lignin to liquid products under supercritical conditions and hydrogen atmosphere.
文摘The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet light microscopy and transmission electron microscopy combined with immunogold labelling. In the cambial zone and cell expansion zone, xyloglucans were localized both in the tangential and radial walls, but no xylans or lignin were found in these regions. With the formation of secondary wall S-1 layer, lignin occurred in the cell corners and middle lamella, while xylans appeared in S-1 layer, and xyloglucans were localized in the primary walls and middle lamella. In pace with the formation of secondary wall S-2 and S-3 layer, lignification extended to S-1, S-2 and S-3 layer in sequence, showing a patchy style of lignin deposition. Concurrently, xylans distributed in the whole secondary walls and xyloglucans, on the other hand, still localized in the primary walls and middle lamella. The results indicated that along with the formation and lignification of the secondary wall, great changes had taken place in the cell walls. Different parts of cell walls, such as cell corners, middle lamella, primary walls and various layers of secondary walls, had different kinds of hemicelluloses, which formed various cell wall architecture combined with lignin and other cell wall components.
文摘A new lignan, together with a known one, was isolated from Isodon lophanthoides var. gerardianus [Bentham] H. Hara. The structure of the new lignan was elucidated as 1_acetoxyl_2e_piperonyl_6e_[6_methoxyl_piperonyl]_3,7_dioxabicyclo_[3,3,0]_octane mainly by 1D and 2D NMR techniques.
文摘The developmental process of oil cells in the shoot of Litsea pungens Hemsl. has been studied with transmission electron microscopy. According to the development of the three layers of cell wall, the developmental process could be divided into 4 stages. In stage 1, the cell wall consisted only of a primary (the outmost) cellulose layer, which might further be divided into two substages, the oil cell initial, and the vacuolizing oil cell. During this stage, there were some small electron translucent vesicles and dark osmiophilic droplets of variant sizes in the different-shaped plastids. It was observed that some dark and gray osmiophilic materials coalesced to vacuoles in the cytoplasm. In stage 2, a lamellated suberin layer accumulated inside the primary cellulose layer. In stage 3, a thicker and looser inner cellulose wall layer was formed gradually inside the suberin layer. Some dark osmiophilic droplets have been observed in this loose inner cellulose wall layer. The plasmodesmata were blocked up and became a special structure. Then, the big vacuole, which is the oil sac, was full of osmiophilic oil. In stage 4, the oil cell became matured and the cytoplasm disintegrated. The oil sac enveloped from plasmalemma was attached to the cupule, which was formed by the protuberance of the inner cellulose wall layer into the lumen. After the maturity of oil cell, the ground cytoplasm began to disintegrate and became electron opaque or exhibited in a disordered state, and the osmiophilic oil appeared light gray.