In order to explore a technology for producing organic fertilizer by composting urban forest litter and river sediment passivated by fly ash, an experiment was conducted to study dynamic changes of several parameters ...In order to explore a technology for producing organic fertilizer by composting urban forest litter and river sediment passivated by fly ash, an experiment was conducted to study dynamic changes of several parameters including temperature, pH, organic matter, C/N and germination index (GI) during high-temperature composting of urban forest litter and river sediment at five different proportions (1:1 (Ⅰ), 1:2 (Ⅱ), 1:3 (Ⅲ), 2:1 (Ⅳ) and 3:1 (Ⅴ)). Results showed that the temperature and pH increased first and then decreased; at the proportion of 3:1, the temperature increased rapidly and the high-temperature duration was longest (5 d); at the end of the composting, all the treatments reached the decomposed status, the pH ranged from 7.47 to 8.87, and the organic matter content was reduced by 36%, 38%, 42%, 33% and 29%, respectively, indicating that increasing the proportion of urban forest litter was conducive to reducing the loss of organic matter. Due to low C/N ratio of river sediment, increasing the proportion of urban forest litter was helpful to improve the efficiency of composting. The GI of treatments I, IV and V reached 80% on day 26, 18 and 19 respectively, but the GI of treatments II and III did not reach this level until the end of composting. Considering the quality of fertilizer and efficiency of composting for large-scale production, the proportion between urban forest litter and river sediment is suitable to be set as 3:1 for production of organic fertilizer.展开更多
Mineral resources exploitation significantly affects the spatial structure and evolutive trend of urbanization in arid areas.In this study,the spatial autocorrelation method and the spatial computation model were used...Mineral resources exploitation significantly affects the spatial structure and evolutive trend of urbanization in arid areas.In this study,the spatial autocorrelation method and the spatial computation model were used to investigate the spatial impacts of mineral resources excavation and processing on comprehensive level of urbanization in the Tarim River Basin,Xinjiang,China for the years of 2000,2006 and 2008.The results are as follows:1)There was a spatial correlation of the development of mineral resources industry and the comprehensive level of urbanization in 2006 and 2008,with the spatial concentration trend rising significantly in 2006 and decreasing in 2008.2)The patterns of local spatial concentration of mineral resources industry and of the comprehensive level of urbanization were relatively stable,and the two patterns showed signs of spatial correlationship.The higher was the degree of the concentration of mineral resources industry,the stronger was its impact on the spatial clustering of urbanization.3)In 2000, mineral resources excavation and processing had a significant positive impact on the comprehensive level of urbanization in the region but not in its adjacent regions.However,in 2008,mineral resources excavation and processing significantly raised the comprehensive level of urbanization not only in the region but also in its neighboring regions.This research demonstrates that the development of mineral resources industry can strongly affect the trends and spatial patterns of urbanization.展开更多
It is recognised that the blockage of culverts by woody debris can result in an increased risk of infrastructure damage and flooding.To date,debris transport analysis has focused on regional fluvial systems and large ...It is recognised that the blockage of culverts by woody debris can result in an increased risk of infrastructure damage and flooding.To date,debris transport analysis has focused on regional fluvial systems and large woody debris,both in flume and field experiments.Given the social and economic risk associated with urban flooding,and as urban drainage design shifts away from subsurface piped network reliance,there is an increasing need to understand debris movement in urban watercourses.The prediction of urban watercourse small woody debris(SWD)movement,both quantity and risk,has undergone only limited analysis predominantly due to lack of field data.This paper describes the development of a methodology to enable the collection of accurate and meaningful SWD residency and transportation data from watercourses.The presented research examines the limitations and effective function of PIT tag technology to collect SWD transport data in the field appropriate for risk and prediction analysis.Passive integrated transponder(PIT)technology provides a method to collect debris transport data within the urban environment.In this study,the tags are installed within small woody debris and released at known locations into a small urban natural watercourse enabling monitoring of movement and travel time.SWD velocity and detention are collated with solute time of travel,watercourse and point flow characteristics to identify the relationships between these key variables.The work presented tests three hypotheses:firstly,that the potential for unobstructed or un-detained SWD movement increases with flow velocity and water level.Secondly,that SWD travel distance,and the resistance forces along this travel path,influence SWD transport potential.Thirdly,the relationship between SWD and channel dimensions is examined with the aim of advancing representative debris transport prediction modelling.展开更多
基金Supported by National Spark Program of China(2010GA781004)Shenzhen Science and Technology Plan Project(CXZZ20140422142833835,CXZZ20150527171538718,GCZX2015051514435234)~~
文摘In order to explore a technology for producing organic fertilizer by composting urban forest litter and river sediment passivated by fly ash, an experiment was conducted to study dynamic changes of several parameters including temperature, pH, organic matter, C/N and germination index (GI) during high-temperature composting of urban forest litter and river sediment at five different proportions (1:1 (Ⅰ), 1:2 (Ⅱ), 1:3 (Ⅲ), 2:1 (Ⅳ) and 3:1 (Ⅴ)). Results showed that the temperature and pH increased first and then decreased; at the proportion of 3:1, the temperature increased rapidly and the high-temperature duration was longest (5 d); at the end of the composting, all the treatments reached the decomposed status, the pH ranged from 7.47 to 8.87, and the organic matter content was reduced by 36%, 38%, 42%, 33% and 29%, respectively, indicating that increasing the proportion of urban forest litter was conducive to reducing the loss of organic matter. Due to low C/N ratio of river sediment, increasing the proportion of urban forest litter was helpful to improve the efficiency of composting. The GI of treatments I, IV and V reached 80% on day 26, 18 and 19 respectively, but the GI of treatments II and III did not reach this level until the end of composting. Considering the quality of fertilizer and efficiency of composting for large-scale production, the proportion between urban forest litter and river sediment is suitable to be set as 3:1 for production of organic fertilizer.
基金Under the auspices of Chinese Academy of Sciences Western Doctor Special Financial Aid(No.XBBS200812)National Natural Science Foundation of China(No.40601032)
文摘Mineral resources exploitation significantly affects the spatial structure and evolutive trend of urbanization in arid areas.In this study,the spatial autocorrelation method and the spatial computation model were used to investigate the spatial impacts of mineral resources excavation and processing on comprehensive level of urbanization in the Tarim River Basin,Xinjiang,China for the years of 2000,2006 and 2008.The results are as follows:1)There was a spatial correlation of the development of mineral resources industry and the comprehensive level of urbanization in 2006 and 2008,with the spatial concentration trend rising significantly in 2006 and decreasing in 2008.2)The patterns of local spatial concentration of mineral resources industry and of the comprehensive level of urbanization were relatively stable,and the two patterns showed signs of spatial correlationship.The higher was the degree of the concentration of mineral resources industry,the stronger was its impact on the spatial clustering of urbanization.3)In 2000, mineral resources excavation and processing had a significant positive impact on the comprehensive level of urbanization in the region but not in its adjacent regions.However,in 2008,mineral resources excavation and processing significantly raised the comprehensive level of urbanization not only in the region but also in its neighboring regions.This research demonstrates that the development of mineral resources industry can strongly affect the trends and spatial patterns of urbanization.
基金supported by the Engineering and Physical Sciences Research Council(Grant Nos.EPSRC EP/J501335/1 and EP/K50337X/1)the Heriot-Watt University School of the Built Environment
文摘It is recognised that the blockage of culverts by woody debris can result in an increased risk of infrastructure damage and flooding.To date,debris transport analysis has focused on regional fluvial systems and large woody debris,both in flume and field experiments.Given the social and economic risk associated with urban flooding,and as urban drainage design shifts away from subsurface piped network reliance,there is an increasing need to understand debris movement in urban watercourses.The prediction of urban watercourse small woody debris(SWD)movement,both quantity and risk,has undergone only limited analysis predominantly due to lack of field data.This paper describes the development of a methodology to enable the collection of accurate and meaningful SWD residency and transportation data from watercourses.The presented research examines the limitations and effective function of PIT tag technology to collect SWD transport data in the field appropriate for risk and prediction analysis.Passive integrated transponder(PIT)technology provides a method to collect debris transport data within the urban environment.In this study,the tags are installed within small woody debris and released at known locations into a small urban natural watercourse enabling monitoring of movement and travel time.SWD velocity and detention are collated with solute time of travel,watercourse and point flow characteristics to identify the relationships between these key variables.The work presented tests three hypotheses:firstly,that the potential for unobstructed or un-detained SWD movement increases with flow velocity and water level.Secondly,that SWD travel distance,and the resistance forces along this travel path,influence SWD transport potential.Thirdly,the relationship between SWD and channel dimensions is examined with the aim of advancing representative debris transport prediction modelling.