期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
卷积神经网络在乐器板材优劣识别中的应用研究
1
作者 黄英来 李晓霜 赵鹏 《计算机应用研究》 CSCD 北大核心 2019年第3期776-780,共5页
目前民族乐器板材振动信号识别算法存在特征提取复杂且耗时长等缺点,针对此问题,提出了一种基于卷积神经网络的木材振动信号分类识别算法,实现了乐器板材优劣的判别。卷积神经网络将特征提取和分类过程结合来进行神经网络的训练,具有识... 目前民族乐器板材振动信号识别算法存在特征提取复杂且耗时长等缺点,针对此问题,提出了一种基于卷积神经网络的木材振动信号分类识别算法,实现了乐器板材优劣的判别。卷积神经网络将特征提取和分类过程结合来进行神经网络的训练,具有识别度高、鲁棒性好等优点。首先重点分析和讨论了提取木材振动信号的语谱图特征,然后应用卷积神经网络结合网格搜索的方法进行参数调优。为了防止过拟合,还应用了Re LU和dropout等新技术,得到最终分类结果。实验证明,测试样本准确率达到96%,明显优于传统方法。该方法可减小人工测量的误差,加快板材的选取时间,为民族乐器制造领域的选材提供了一种更加实用的方法。 展开更多
关键词 卷积神经网络 网格搜索 语谱图 木材振动信号
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部