期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
iWood:基于卷积神经网络的濒危珍贵树种木材自动识别系统
被引量:
11
1
作者
何拓
刘守佳
+3 位作者
陆杨
张永刚
焦立超
殷亚方
《林业科学》
EI
CAS
CSCD
北大核心
2021年第9期152-159,共8页
【目的】构建基于卷积神经网络的木材识别系统,实现木材树种在多场景条件下的自动精准识别,为我国提升CITES履约执法能力、加强林产品产业链监管以及保障木材安全提供科技支撑。【方法】采集15种黄檀属和11种紫檀属木材标本横切面构造...
【目的】构建基于卷积神经网络的木材识别系统,实现木材树种在多场景条件下的自动精准识别,为我国提升CITES履约执法能力、加强林产品产业链监管以及保障木材安全提供科技支撑。【方法】采集15种黄檀属和11种紫檀属木材标本横切面构造特征图像,建立图像数据集Rosewood-26;构建AlexNet、VGG16、DenseNet-121和ResNet-50共4种卷积神经网络模型,基于ImageNet图像数据集对模型进行迁移学习,采用Rosewood-26图像数据集训练、测试和比较模型,优选识别性能较好的卷积神经网络模型,并进行木材树种分类;在此基础上,构建包含15种黄檀属和11种紫檀属树种的木材自动识别系统iWood,利用市场木材样品对系统进行应用测试和评价。【结果】在构建的4种卷积神经网络模型中,ResNet-50模型表现出最高的识别精度(98.33%)、最少的权重数量和较低的模型复杂性,适用于木材树种准确快速识别;ResNet-50模型对9种黄檀属和3种紫檀属木材的识别精度达100%,并可成功鉴别构造特征极其相似的檀香紫檀和染料紫檀;基于ResNet-50模型构建的木材自动识别系统iWood,在“属”和“种”水平的识别精度分别为91.8%和77.3%。【结论】基于卷积神经网络的木材识别系统iWood适用于海关执法、木材贸易和质量监督检验等多场景下的木材自动精准识别,能够为我国提升CITES履约执法能力、加强林产品产业链监管以及保障木材安全提供科技支撑。
展开更多
关键词
iWood
卷积神经网络
木材
构造特征
图像数据集
木材自动识别
识别
精度
下载PDF
职称材料
题名
iWood:基于卷积神经网络的濒危珍贵树种木材自动识别系统
被引量:
11
1
作者
何拓
刘守佳
陆杨
张永刚
焦立超
殷亚方
机构
中国林业科学研究院木材工业研究所中国林业科学研究院木材标本馆
出处
《林业科学》
EI
CAS
CSCD
北大核心
2021年第9期152-159,共8页
基金
中央级公益性科研院所基本科研业务费专项资金重点项目“木材标本资源及其科学数据平台建设”(CAFYBB2021ZD002)。
文摘
【目的】构建基于卷积神经网络的木材识别系统,实现木材树种在多场景条件下的自动精准识别,为我国提升CITES履约执法能力、加强林产品产业链监管以及保障木材安全提供科技支撑。【方法】采集15种黄檀属和11种紫檀属木材标本横切面构造特征图像,建立图像数据集Rosewood-26;构建AlexNet、VGG16、DenseNet-121和ResNet-50共4种卷积神经网络模型,基于ImageNet图像数据集对模型进行迁移学习,采用Rosewood-26图像数据集训练、测试和比较模型,优选识别性能较好的卷积神经网络模型,并进行木材树种分类;在此基础上,构建包含15种黄檀属和11种紫檀属树种的木材自动识别系统iWood,利用市场木材样品对系统进行应用测试和评价。【结果】在构建的4种卷积神经网络模型中,ResNet-50模型表现出最高的识别精度(98.33%)、最少的权重数量和较低的模型复杂性,适用于木材树种准确快速识别;ResNet-50模型对9种黄檀属和3种紫檀属木材的识别精度达100%,并可成功鉴别构造特征极其相似的檀香紫檀和染料紫檀;基于ResNet-50模型构建的木材自动识别系统iWood,在“属”和“种”水平的识别精度分别为91.8%和77.3%。【结论】基于卷积神经网络的木材识别系统iWood适用于海关执法、木材贸易和质量监督检验等多场景下的木材自动精准识别,能够为我国提升CITES履约执法能力、加强林产品产业链监管以及保障木材安全提供科技支撑。
关键词
iWood
卷积神经网络
木材
构造特征
图像数据集
木材自动识别
识别
精度
Keywords
iWood
convolutional neural networks
wood anatomical features
image dataset
automated identification
identification accuracy
分类号
S781.1 [农业科学—木材科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
iWood:基于卷积神经网络的濒危珍贵树种木材自动识别系统
何拓
刘守佳
陆杨
张永刚
焦立超
殷亚方
《林业科学》
EI
CAS
CSCD
北大核心
2021
11
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部