期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
马尾松木质素快速热解及产物分析 被引量:6
1
作者 郭忠 蒋新元 +2 位作者 廖媛媛 张敏 黄一磊 《中南林业科技大学学报》 CAS CSCD 北大核心 2017年第6期101-107,共7页
以针叶材马尾松木质素(Pinus massoniana)为快速热解的原料,采用热解-气相色谱-质谱联用(PyGC-MS)技术,分别对磨木木素(MWL)、碱木素(AL)以及酸不溶木素(Klason木素)三种不同种类的木质素及磨木木素在不同热裂解温度下进行了热裂解实验... 以针叶材马尾松木质素(Pinus massoniana)为快速热解的原料,采用热解-气相色谱-质谱联用(PyGC-MS)技术,分别对磨木木素(MWL)、碱木素(AL)以及酸不溶木素(Klason木素)三种不同种类的木质素及磨木木素在不同热裂解温度下进行了热裂解实验,分析了不同条件下热裂解产物中主要酚类组分相对含量的变化。结果显示,裂解温度为500℃时,马尾松不同类型木质素热裂解产物存在较大差异,磨木木素、碱木素和酸不溶木素裂解产物中总酚相对含量分别为62.3%、44.86%和16.25%,结果说明磨木木素最易裂解,碱木素次之,酸不溶木素最难裂解。热裂解温度从400℃升高到500℃再升高到600℃的过程中,磨木木素裂解产物中总酚相对含量仅从59.78%升高到62.31%再升高到65.72%,主要酚类组分为愈创木酚及其衍生物,各酚类组分相对含量随温度升高呈现出不同的变化趋势。 展开更多
关键词 马尾松 木质素: Py-GC-MS 酚类组分
下载PDF
Effect of Catalyst Properties on Hydrocracking of Pyrolytic Lignin to Liquid Fuel in Supercritical Ethanol 被引量:1
2
作者 姚倩 唐喆 +2 位作者 郭建华 张颖 郭庆祥 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第2期209-216,I0002,共9页
The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst prop- erties, including acidity, pore si... The metal-acid bifunctional catalysts have been used for bio-oil upgrading and pyrolytic lignin hydrocracking. In this work, the effects of the metal-acid bifunctional catalyst prop- erties, including acidity, pore size and supported metal on hydrocracking of pyrolytic lignin in supercritical ethanol and hydrogen were investigated at 260 ℃. A series of catalysts were prepared and characterized by BET, XRD, and NHa-TPD techniques. The results showed that enhancing the acidity of the catalyst without metal can promote pyrolytic lignin poly- merization to form more solid and condensation to produce more water. The pore size of microporous catalyst was smaller than mesoporous catalyst. Together with strong acid- ity, it caused pyrolytic lignin further hydrocrack to numerous gas. Introducing Ru into acidic catalysts promoted pyrolytic lignin hydrocracking and inhibited the polymerization and condensation, which caused the yield of pyrolytic lignin liquefaction product to increase significantly. Therefore, bifunctional catalyst with high hydrocracking activity metal Ru supported on materials with acidic sites and mesopores was imperative to get satisfactory results for the conversion of pyrolytic lignin to liquid products under supercritical conditions and hydrogen atmosphere. 展开更多
关键词 Pyrolytic lignin HYDROCRACKING Bifunctional catalyst
下载PDF
Synthesis of Cumene from Lignin by Catalytic Transformation
3
作者 金凤 范明慧 +1 位作者 贾启芳 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第3期348-356,I0002,共10页
Cumene is an important intermediate and chemical in chemical industry. In this work, directional preparation of cumene using lignin was achieved by a three-step cascade process. The mixture aromatics were first produc... Cumene is an important intermediate and chemical in chemical industry. In this work, directional preparation of cumene using lignin was achieved by a three-step cascade process. The mixture aromatics were first produced by the catalytic pyrolysis of lignin at 450 ℃ over I%Zn/HZSM-5 catalyst, monocyclic aromatics with the selectivity of 85.7 wt% were obtained. Then, the catalytic dealkylation matics with 93.6 wt% benzene at 600 ℃ of heavier aromatics resulted in benzene-rich aro- over Hβ catalyst. Finally, the cumene synthesis was performed by the aromatic alkylation, giving cumene selectivity of 91.6 C-tool% using the [bmim]Cl-2AlCl3 ionic liquid at room temperature for 15 min. Besides, adding a small amount of methanol to the feed can efficiently suppress the coke yield and enhance the aromatics yield. The proposed transformation potentially provides a useful route for production of cumene using renewable lignin. 展开更多
关键词 LIGNIN CUMENE Catalytic pyrolysis DEALKYLATION ALKYLATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部