研究了带未知模型参数和衰减观测率多传感器线性离散随机系统的信息融合估计问题.在模型参数和衰减观测率未知的情形下,应用递推增广最小二乘(Recursive extend least squares,RELS)算法和加权融合估计算法提出了分布式融合未知模型参...研究了带未知模型参数和衰减观测率多传感器线性离散随机系统的信息融合估计问题.在模型参数和衰减观测率未知的情形下,应用递推增广最小二乘(Recursive extend least squares,RELS)算法和加权融合估计算法提出了分布式融合未知模型参数辨识器;应用相关函数对描述衰减观测现象的随机变量的数学期望和方差进行在线辨识.将辨识后的模型参数、数学期望和方差代入到最优分布式融合状态滤波器中,获得了相应的自校正融合状态滤波算法.应用动态误差系统分析(Dynamic error system analysis,DESA)方法证明了算法的收敛性.仿真例子验证了算法的有效性.展开更多
Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,whic...Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.展开更多
文摘研究了带未知模型参数和衰减观测率多传感器线性离散随机系统的信息融合估计问题.在模型参数和衰减观测率未知的情形下,应用递推增广最小二乘(Recursive extend least squares,RELS)算法和加权融合估计算法提出了分布式融合未知模型参数辨识器;应用相关函数对描述衰减观测现象的随机变量的数学期望和方差进行在线辨识.将辨识后的模型参数、数学期望和方差代入到最优分布式融合状态滤波器中,获得了相应的自校正融合状态滤波算法.应用动态误差系统分析(Dynamic error system analysis,DESA)方法证明了算法的收敛性.仿真例子验证了算法的有效性.
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (KYJJ2012-05-28).
文摘Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.