A series of Tb3+ doped Na Y(Mo O4)2 are synthesized by a solid-state reaction at 550 °C for 4 h, and their luminescent properties are investigated. The phase formation is carried out with X-ray powder diffraction...A series of Tb3+ doped Na Y(Mo O4)2 are synthesized by a solid-state reaction at 550 °C for 4 h, and their luminescent properties are investigated. The phase formation is carried out with X-ray powder diffraction analysis, and there is no other crystalline phase except Na Y(Mo O4)2. Na Y(Mo O4)2:Tb3+ can produce the green emission under 290 nm radiation excitation, and the luminescence emission peak at 545 nm corresponds to the 5D4→7F5 transition of Tb3+. The emission intensity of Tb3+ in Na Y(Mo O4)2 is enhanced with the increase of Tb3+ concentration, and there is no concentration quenching effect. The phenomena are proved by the decay curves of Tb3+. Moreover, the Commission International de I'Eclairage(CIE) chromaticity coordinates of Na Y(Mo O4)2:Tb3+ locate in the green region.展开更多
基金supported by the National Natural Science Foundation of China(No.50902042)the Natural Science Foundation of Hebei Province(Nos.A2014201035 and E2014201037)the Education Office Research Foundation of Hebei Province(Nos.ZD2014036 and QN2014085)
文摘A series of Tb3+ doped Na Y(Mo O4)2 are synthesized by a solid-state reaction at 550 °C for 4 h, and their luminescent properties are investigated. The phase formation is carried out with X-ray powder diffraction analysis, and there is no other crystalline phase except Na Y(Mo O4)2. Na Y(Mo O4)2:Tb3+ can produce the green emission under 290 nm radiation excitation, and the luminescence emission peak at 545 nm corresponds to the 5D4→7F5 transition of Tb3+. The emission intensity of Tb3+ in Na Y(Mo O4)2 is enhanced with the increase of Tb3+ concentration, and there is no concentration quenching effect. The phenomena are proved by the decay curves of Tb3+. Moreover, the Commission International de I'Eclairage(CIE) chromaticity coordinates of Na Y(Mo O4)2:Tb3+ locate in the green region.