The existing ontology mapping methods mainly consider the structure of the ontology and the mapping precision is lower to some extent. According to statistical theory, a method which is based on the hidden Markov mode...The existing ontology mapping methods mainly consider the structure of the ontology and the mapping precision is lower to some extent. According to statistical theory, a method which is based on the hidden Markov model is presented to establish ontology mapping. This method considers concepts as models, and attributes, relations, hierarchies, siblings and rules of the concepts as the states of the HMM, respectively. The models corresponding to the concepts are built by virtue of learning many training instances. On the basis of the best state sequence that is decided by the Viterbi algorithm and corresponding to the instance, mapping between the concepts can be established by maximum likelihood estimation. Experimental results show that this method can improve the precision of heterogeneous ontology mapping effectively.展开更多
In order to solve the problem of semantic heterogeneity in information integration, an ontology based semantic information integration (OSII) model and its logical framework are proposed. The OSII adopts the hybrid ...In order to solve the problem of semantic heterogeneity in information integration, an ontology based semantic information integration (OSII) model and its logical framework are proposed. The OSII adopts the hybrid ontology approach and uses OWL (web ontology language) as the ontology language. It obtains unified views from multiple sources by building mappings between local ontologies and the global ontology. A tree- based multi-strategy ontology mapping algorithm is proposed. The algorithm is achieved by the following four steps: pre-processing, name mapping, subtree mapping and remedy mapping. The advantages of this algorithm are: mapping in the compatible datatype categories and using heuristic rules can improve mapping efficiency; both linguistic and structural similarity are used to improve the accuracy of the similarity calculation; an iterative remedy is adopted to obtain correct and complete mappings. A challenging example is used to illustrate the validity of the algorithm. The OSII is realized to effectively solve the problem of semantic heterogeneity in information integration and to implement interoperability of multiple information sources.展开更多
基金The Weaponry Equipment Foundation of PLA Equipment Ministry (No51406020105JB8103)
文摘The existing ontology mapping methods mainly consider the structure of the ontology and the mapping precision is lower to some extent. According to statistical theory, a method which is based on the hidden Markov model is presented to establish ontology mapping. This method considers concepts as models, and attributes, relations, hierarchies, siblings and rules of the concepts as the states of the HMM, respectively. The models corresponding to the concepts are built by virtue of learning many training instances. On the basis of the best state sequence that is decided by the Viterbi algorithm and corresponding to the instance, mapping between the concepts can be established by maximum likelihood estimation. Experimental results show that this method can improve the precision of heterogeneous ontology mapping effectively.
文摘In order to solve the problem of semantic heterogeneity in information integration, an ontology based semantic information integration (OSII) model and its logical framework are proposed. The OSII adopts the hybrid ontology approach and uses OWL (web ontology language) as the ontology language. It obtains unified views from multiple sources by building mappings between local ontologies and the global ontology. A tree- based multi-strategy ontology mapping algorithm is proposed. The algorithm is achieved by the following four steps: pre-processing, name mapping, subtree mapping and remedy mapping. The advantages of this algorithm are: mapping in the compatible datatype categories and using heuristic rules can improve mapping efficiency; both linguistic and structural similarity are used to improve the accuracy of the similarity calculation; an iterative remedy is adopted to obtain correct and complete mappings. A challenging example is used to illustrate the validity of the algorithm. The OSII is realized to effectively solve the problem of semantic heterogeneity in information integration and to implement interoperability of multiple information sources.