This paper presents two different algorithms that derive the cohesion structure in the form of lexical chains from two kinds of language resources HowNet and TongYiCiCiLin. The re-search that connects the cohesion str...This paper presents two different algorithms that derive the cohesion structure in the form of lexical chains from two kinds of language resources HowNet and TongYiCiCiLin. The re-search that connects the cohesion structure of a text to the derivation of its summary is displayed. A novel model of automatic text summarization is devised,based on the data provided by lexical chains from original texts. Moreover,the construction rules of lexical chains are modified accord-ing to characteristics of the knowledge database in order to be more suitable for Chinese summa-rization. Evaluation results show that high quality indicative summaries are produced from Chi-nese texts.展开更多
This paper presents a new improved term frequency/inverse document frequency (TF-IDF) approach which uses confidence, support and characteristic words to enhance the recall and precision of text classification. Synony...This paper presents a new improved term frequency/inverse document frequency (TF-IDF) approach which uses confidence, support and characteristic words to enhance the recall and precision of text classification. Synonyms defined by a lexicon are processed in the improved TF-IDF approach. We detailedly discuss and analyze the relationship among confidence, recall and precision. The experiments based on science and technology gave promising results that the new TF-IDF approach improves the precision and recall of text classification compared with the conventional TF-IDF approach.展开更多
基金the Key Project of National Natural Sci-ence Foundation of China (No.60435020)the High Technology Research and Development Programme of China (No.2002AA117010-09).
文摘This paper presents two different algorithms that derive the cohesion structure in the form of lexical chains from two kinds of language resources HowNet and TongYiCiCiLin. The re-search that connects the cohesion structure of a text to the derivation of its summary is displayed. A novel model of automatic text summarization is devised,based on the data provided by lexical chains from original texts. Moreover,the construction rules of lexical chains are modified accord-ing to characteristics of the knowledge database in order to be more suitable for Chinese summa-rization. Evaluation results show that high quality indicative summaries are produced from Chi-nese texts.
基金Project (No. 60082003) supported by the National Natural Science Foundation of China
文摘This paper presents a new improved term frequency/inverse document frequency (TF-IDF) approach which uses confidence, support and characteristic words to enhance the recall and precision of text classification. Synonyms defined by a lexicon are processed in the improved TF-IDF approach. We detailedly discuss and analyze the relationship among confidence, recall and precision. The experiments based on science and technology gave promising results that the new TF-IDF approach improves the precision and recall of text classification compared with the conventional TF-IDF approach.