The maximum rate of carboxylation (Vcax) is a key photosynthetic parameter for gross primary produc- tion (GPP) estimation in terrestrial biosphere models. A set of observation-based Vcax values, which take the ni...The maximum rate of carboxylation (Vcax) is a key photosynthetic parameter for gross primary produc- tion (GPP) estimation in terrestrial biosphere models. A set of observation-based Vcax values, which take the ni- trogen limitation on photosynthetic rates into consideration, are used in version 4.5 of the Community Land Model (CLM4.5). However, CLM4.5 with carbon-nitrogen (CN) biogeochemistry (CLM4.5-CN) still uses an inde- pendent decay coefficient for nitrogen after the photosyn- thesis calculation. This means that the nitrogen limitation on the carbon cycle is accounted for twice when CN bio- geochemistry is active. Therefore, to avoid this double nitrogen down-regulation in CLM4.5-CN, the original Vcmax scheme is revised with a new one that only accounts for the transition between Vcmax and its potential value (without nitrogen limitation). Compared to flux tower- based observations, the new Vcmax scheme reduces the root-mean-square error (RMSE) in GPP for China's Mainland by 13.7 g C m-2 yr-1, with a larger decrease over humid areas (39.2 g C m 2 yr-1). Moreover, net primary production and leaf area index are also improved, with reductions in RMSE by 0.8% and 11.5%, respectively.展开更多
Finding alternative local sources of plant nutrients is a practical, low-cost, and long-term strategy. In this study, laboratory column experiments were conducted in a completely randomized design to evaluate the feas...Finding alternative local sources of plant nutrients is a practical, low-cost, and long-term strategy. In this study, laboratory column experiments were conducted in a completely randomized design to evaluate the feasibility of using phosphate rock and dolostone as fertilizers or acid-neutralizing agents for application in tropical acid soils. The dissolution rates of different particle-size fractions(0.063–0.25, 0.25–0.5, and 0.5–2 mm) of both rocks were studied by citric acid solution at p H 4 and 2 and water, with extraction times of 1, 3, 5, 7, 12, 24, 72, 144, 240, and 360 h. The results showed that the dissolution of both rocks depended on the particle size,leaching solution, and extraction time. The dissolution rate of rock-forming minerals increased as the specific surface area increased,corresponding to a decrease in particle size. In all cases, the release kinetics was characterized by two phases: 1) a first stage of rapid release that lasted 24 h and would ensure short-term nutrient release, and 2) a second stage of slow release after 24 h, representing the long-term nutrient release efficiency. Both rocks were suitable as slow-release fertilizers in strongly acid soils and would ensure the replenishment of P, Ca, and Mg. A combination of fine and medium particle-size fractions should be used to ensure high nutrient-release efficiency. Much work could remain to determine the overall impact of considerable amounts of fresh rocks in soils.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.91125016 and 41305066)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05110102)
文摘The maximum rate of carboxylation (Vcax) is a key photosynthetic parameter for gross primary produc- tion (GPP) estimation in terrestrial biosphere models. A set of observation-based Vcax values, which take the ni- trogen limitation on photosynthetic rates into consideration, are used in version 4.5 of the Community Land Model (CLM4.5). However, CLM4.5 with carbon-nitrogen (CN) biogeochemistry (CLM4.5-CN) still uses an inde- pendent decay coefficient for nitrogen after the photosyn- thesis calculation. This means that the nitrogen limitation on the carbon cycle is accounted for twice when CN bio- geochemistry is active. Therefore, to avoid this double nitrogen down-regulation in CLM4.5-CN, the original Vcmax scheme is revised with a new one that only accounts for the transition between Vcmax and its potential value (without nitrogen limitation). Compared to flux tower- based observations, the new Vcmax scheme reduces the root-mean-square error (RMSE) in GPP for China's Mainland by 13.7 g C m-2 yr-1, with a larger decrease over humid areas (39.2 g C m 2 yr-1). Moreover, net primary production and leaf area index are also improved, with reductions in RMSE by 0.8% and 11.5%, respectively.
基金supported by the "Applied Research and Multi-sectorial Program" (FIAM) (No. 5.2.1) granted by the Italian Cooperation and Development Agency (ICDA) to the Universidade Eduardo Mondlanethe Polytechnic University of Marche, Italy for the PhD scholarship provided to the first author as well as research funding for this work
文摘Finding alternative local sources of plant nutrients is a practical, low-cost, and long-term strategy. In this study, laboratory column experiments were conducted in a completely randomized design to evaluate the feasibility of using phosphate rock and dolostone as fertilizers or acid-neutralizing agents for application in tropical acid soils. The dissolution rates of different particle-size fractions(0.063–0.25, 0.25–0.5, and 0.5–2 mm) of both rocks were studied by citric acid solution at p H 4 and 2 and water, with extraction times of 1, 3, 5, 7, 12, 24, 72, 144, 240, and 360 h. The results showed that the dissolution of both rocks depended on the particle size,leaching solution, and extraction time. The dissolution rate of rock-forming minerals increased as the specific surface area increased,corresponding to a decrease in particle size. In all cases, the release kinetics was characterized by two phases: 1) a first stage of rapid release that lasted 24 h and would ensure short-term nutrient release, and 2) a second stage of slow release after 24 h, representing the long-term nutrient release efficiency. Both rocks were suitable as slow-release fertilizers in strongly acid soils and would ensure the replenishment of P, Ca, and Mg. A combination of fine and medium particle-size fractions should be used to ensure high nutrient-release efficiency. Much work could remain to determine the overall impact of considerable amounts of fresh rocks in soils.