For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a mult...For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.展开更多
This paper presents an analytical framework for evaluating the FBCE (fully burdened cost of energy) in military operations. The FBCE methodology considers all operational factors in the energy supply chain, includin...This paper presents an analytical framework for evaluating the FBCE (fully burdened cost of energy) in military operations. The FBCE methodology considers all operational factors in the energy supply chain, including transportation, infrastructure, manpower, maintenance, security protection, and storage of energy. The FBCE concept allows a proper evaluation of the energy costs when assessing different alternatives in military operations and acquisitions. It could also be used to inform decisions on the size and focus of investment in science and technology programs related to the development of efficient military capabilities, alternative fuel sources, and renewable energy solutions. This paper uses cost estimation techniques to formulate the FBCE and focuses on fuel-based military systems and operations. Two case studies using Canadian Forces domestic and deployed operational bases are presented and discussed to demonstrate the methodology.展开更多
基金Science and Technology Project of State Grid Corporation of China(No.SGGSKY00FJJS1800140)。
文摘For the low utilization rate of photovoltaic power generation,taking a new energy power system constisting of concentrating solar power(CSP),photovoltaic power(PP)and battery energy storage system as an example,a multi-objective optimization scheduling strategy considering energy storage participation is proposed.Firstly,the new energy power system model is established,and the PP scenario generation and reduction frame based on the autoregressive moving average model and Kantorovich-distance is proposed.Then,based on the optimization goal of the system operation cost minimization and the PP output power consumption maximization,the multi-objective optimization scheduling model is established.Finally,the simulation results show that introducing energy storage into the system can effectively reduce the system operation cost and improve the utilization efficiency of PP.
文摘This paper presents an analytical framework for evaluating the FBCE (fully burdened cost of energy) in military operations. The FBCE methodology considers all operational factors in the energy supply chain, including transportation, infrastructure, manpower, maintenance, security protection, and storage of energy. The FBCE concept allows a proper evaluation of the energy costs when assessing different alternatives in military operations and acquisitions. It could also be used to inform decisions on the size and focus of investment in science and technology programs related to the development of efficient military capabilities, alternative fuel sources, and renewable energy solutions. This paper uses cost estimation techniques to formulate the FBCE and focuses on fuel-based military systems and operations. Two case studies using Canadian Forces domestic and deployed operational bases are presented and discussed to demonstrate the methodology.