期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
干式螺杆真空泵研究现状与展望 被引量:27
1
作者 郭蓓 薛建国 +2 位作者 牛瑞 张建 吴炎 《真空》 CAS 北大核心 2009年第5期37-40,共4页
介绍目前螺杆式真空泵现状,分析了螺杆端面型线研究情况和整机冷却中存在的问题。
关键词 螺杆真空泵 端面型线 机体冷却
下载PDF
A New Unsteady Fluid Network Approach to Simulate the Characteristics of the Air System of a Gas Turbine System
2
作者 Shengping Hou 《Journal of Energy and Power Engineering》 2012年第11期1751-1757,共7页
In this paper, a novel unsteady fluid network simulation method to compute the air system of jet engine was coded to predict the characteristics of pressure, temperature and mass flow rate of the flow and the temperat... In this paper, a novel unsteady fluid network simulation method to compute the air system of jet engine was coded to predict the characteristics of pressure, temperature and mass flow rate of the flow and the temperature of the solid in the gas turbine engine. The fluid and solid areas are divided into the network comprised of branches and nodes, and the method solves transient mass, energy conservation equations at each node and momentum conservation equation at each branch by a newly deduced numerical method. With this method, to simulate complicated fluid and solid system in short time becomes possible. To verify the code developed, it has been applied to simulate a gas turbine model against the widely used commercial software Flowmaster. And the comparisons show that the two are in good agreement. Then the verified program is applied to the prediction of the characteristics of a designed turbine disk and air-cooling system associated to it, and useful information is obtained. 展开更多
关键词 Gas turbine air system unsteady fluid simulation.
下载PDF
Power generation and heat sink improvement characteristics of recooling cycle for thermal cracked hydrocarbon fueled scramjet 被引量:7
3
作者 BAO Wen QIN Jiang +2 位作者 ZHOU WeiXing ZHANG Duo YU DaRen 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第4期955-963,共9页
In order to further investigate how much fuel heat sink could be increased and how much power generation could be obtained by using recooling cycle for a regeneratively cooled scramjet,the energy conversion from heat ... In order to further investigate how much fuel heat sink could be increased and how much power generation could be obtained by using recooling cycle for a regeneratively cooled scramjet,the energy conversion from heat to electricity and the fuel heat sink increase in recooling cycle are experimentally investigated for fuel conversion rate and components of gas cracked fuel products at different fuel temperatures.The results indicate that the total fuel heat sink(i.e.,physical+chemical+recooling) of a recooling cycle is obviously higher than the heat sink of fuel itself,and the maximum heat sink increment is as high as 0.4 MJ/kg throughout the recooling cycle.Furthermore,the cracked fuel mixture has a significant capacity of doing work.The thermodynamic power generation scheme,which adopts the cracked fuel gas mixture as the working fluid,is a potential power generation cycle,and the maximum specific power generation is about 500 kW/kg.Turbine-pump scheme using cracked fuel gas mixture is also a potential fuel feeding cycle. 展开更多
关键词 recooling cycle SCRAMJET heat sink power generation thermal cracking
原文传递
Numerical investigation on the thermal protection mechanism for blunt body with forward-facing cavity 被引量:3
4
作者 LI XinDong HU ZongMin JIANG ZongLin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第7期1120-1129,共10页
Numerical experiments are carried out using the standard hypersonic ballistic-type model(HB-2) to investigate the effect of forward-facing cavity on the aerodynamic heating. A general concept is proposed which utilize... Numerical experiments are carried out using the standard hypersonic ballistic-type model(HB-2) to investigate the effect of forward-facing cavity on the aerodynamic heating. A general concept is proposed which utilizes the flow disturbances generated passively in the nosed subsonic region to weaken the detached shock wave. Several aspects are mainly studied, including shock shape and standoff distance, surface heat flux and pressure, flowfield feature and cooling mechanism. The numerical results indicate that shock strength and standoff distance increase with an increase in the L/D ratio of the cavity. Interestingly, a bulge structure of the detached shock associated with a deep cavity is observed for the first time. Local surface heat flux and pressure around the concave nose are much lower respectively than those at the stagnation point of the baseline model. In addition, both surface heat and pressure reductions are proportional to the L/D ratio. A negative heating phenomenon may occur in the vicinity of a sharp lip or on the base wall of a deep cavity. If the L/D ratio exceeds 0.7, the detached shock appears as a self-sustained oscillation which can be referred to as the cooling mechanism. 展开更多
关键词 hypersonic flow aerodynamic heating thermal protection system forward-facing cavity
原文传递
Regenerative Cooling for Liquid Rocket Engines 被引量:1
5
作者 Qi Feng(No.11 Institute of the National Bureau of Astronautics) 《Journal of Thermal Science》 SCIE EI CAS CSCD 1995年第1期54-58,共5页
Heat transfer in the thrust chamber is of great importance in the design of liquid propellant rocketengines. Regenerative cooling is an advanced method which can ensure not only the proper runningbut also higher perfo... Heat transfer in the thrust chamber is of great importance in the design of liquid propellant rocketengines. Regenerative cooling is an advanced method which can ensure not only the proper runningbut also higher performance of a rocket engine. The theoretical model is complicated, it relates to fluiddynamics, heat transfer, combustion, etc... In this papers a regenerative cooling model is presented.Effects such as radiation, heat transfer to environment, variable thermal properties and coking areincluded in the model. This model can be applied to all kinds of liquid propellant rocket engines aswell as similar constructions. The modularized computer code is completed in the work. 展开更多
关键词 liquid propellant rocket engine regenerative cooling thrust chamber heat transfer HYDROGEN METHANE kerosene.
原文传递
Numerical Investigation on Super-cooled Large Droplet Icing of Fan Rotor Blade in Jet Engine
6
作者 Keisuke Isobe Masaya Suzuki Makoto Yamamoto 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第5期432-437,共6页
Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe... Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents.Although various anti-icing and deicing systems have been developed,such accidents still occur.Therefore,it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine.However,flight tests for ice accretion are very expensive,and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur.Therefore,it is expected that computational fluid dynamics(CFD),which can estimate ice accretion in various climate conditions,will be a useful way to predict and understand the ice accretion phenomenon.On the other hand,although the icing caused by super-cooled large droplets(SLD) is very dangerous,the numerical method has not been established yet.This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature.In the present study,we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing,and the code is applied to a fan rotor blade.The numerical results with and without the SLD icing model are compared.Through this study,the influence of the SLD icing model is numerically clarified. 展开更多
关键词 Ice Accretion Fan Rotor Blade Super-cooled Large Droplet Multi-physics Simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部