An estimation method for aircraft similarity based on fuzzy theory and grey incidence analysis is presented. This estimation method is made up of the triangular fuzzy transforming model of linguistic variables and the...An estimation method for aircraft similarity based on fuzzy theory and grey incidence analysis is presented. This estimation method is made up of the triangular fuzzy transforming model of linguistic variables and the method of grey incidence analysis. Nine feature attributes of aircraft are selected to estimate the similarity between the new aircraft and the existing aircraft. A new aircraft X and other six existing aircrafts are taken as examples. Analyses show that similarity estimation results obtained from the method are in accordance with practice.展开更多
Stochastic seismic inversion is the combination of geostatistics and seismic inversion technology which integrates information from seismic records, well logs, and geostatistics into a posterior probability density fu...Stochastic seismic inversion is the combination of geostatistics and seismic inversion technology which integrates information from seismic records, well logs, and geostatistics into a posterior probability density function (PDF) of subsurface models. The Markov chain Monte Carlo (MCMC) method is used to sample the posterior PDF and the subsurface model characteristics can be inferred by analyzing a set of the posterior PDF samples. In this paper, we first introduce the stochastic seismic inversion theory, discuss and analyze the four key parameters: seismic data signal-to-noise ratio (S/N), variogram, the posterior PDF sample number, and well density, and propose the optimum selection of these parameters. The analysis results show that seismic data S/N adjusts the compromise between the influence of the seismic data and geostatistics on the inversion results, the variogram controls the smoothness of the inversion results, the posterior PDF sample number determines the reliability of the statistical characteristics derived from the samples, and well density influences the inversion uncertainty. Finally, the comparison between the stochastic seismic inversion and the deterministic model based seismic inversion indicates that the stochastic seismic inversion can provide more reliable information of the subsurface character.展开更多
In order to reduce the accident rate of consumer-grade unmanned aerial vehicles(UAVs)in daily use scenarios,the accident causes are analyzed based on the accident cases of consumer-grade UAVs.By extracting accident ca...In order to reduce the accident rate of consumer-grade unmanned aerial vehicles(UAVs)in daily use scenarios,the accident causes are analyzed based on the accident cases of consumer-grade UAVs.By extracting accident causing factors based on the Grounded theory,the relationship between these factors is analyzed.The Bayesian network for consumer-grade UAV accidents is constructed.With the Grounded theory-Bayesian network,the probability of four types of accidents is inferred:fall,air collision,disappearance,and personal injury.With the posterior probability of each factor being reversely reasoned,the causal chain with the maximum probability of each accident is obtained.After the sensitivity of each factor is analyzed,the key nodes in the network accordingly are inferred.Then the causing factors of consumer-grade UAV accidents are analyzed.The results show that the probability of fall accident is the highest,the fall accident is associated with the probabilistic maximum causal chain of personal injury,and the sensitivity analysis results of each type of accident as the result node are inconsistent.展开更多
To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and t...To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and their topological positions.First,the dependencies among the components are well-represented and well-calculated.Second,a mechatronic system is modeled as a weighted and directional functional dependency network(FDN),in which the node weights are determined by the functional roles of components in the system and their topological positions in the complex network whereas the edge weights are represented by dependency strengths.Third,given that the PageRank algorithm cannot calculate the dependency strengths among components,an improved PageRank importance measure(IPIM)algorithm is proposed,which combines the node weights and edge weights of complex networks.IPIM also considers the importance of neighboring components.Finally,a case study is conducted to investigate the accuracy of the proposed method.Results show that the method can effectively determine the importance measures of components.展开更多
It has been widely believed that trust is the basis for on-line trading by both academia and practice. The process of f initial trust formation is a dynamic and repeated process. In the electric business environment, ...It has been widely believed that trust is the basis for on-line trading by both academia and practice. The process of f initial trust formation is a dynamic and repeated process. In the electric business environment, this work chose to research the first phase of the process, which is initial trust. The Writer established dynamic model of initial trust formation biased on theory of planned behavior with other theories, such as TAM and social exchange theory, after micro-analyzing this formation mechanism from. in order to confirming effectiveness of the dynamic model, the writer adopted empirical study, from which writer got an order of. From the result of empirical study, we got the strength order of main factors that can influence the establishment of initial trust.展开更多
文摘An estimation method for aircraft similarity based on fuzzy theory and grey incidence analysis is presented. This estimation method is made up of the triangular fuzzy transforming model of linguistic variables and the method of grey incidence analysis. Nine feature attributes of aircraft are selected to estimate the similarity between the new aircraft and the existing aircraft. A new aircraft X and other six existing aircrafts are taken as examples. Analyses show that similarity estimation results obtained from the method are in accordance with practice.
基金supported by the National Major Science and Technology Project of China on Development of Big Oil-Gas Fields and Coalbed Methane (No. 2008ZX05010-002)
文摘Stochastic seismic inversion is the combination of geostatistics and seismic inversion technology which integrates information from seismic records, well logs, and geostatistics into a posterior probability density function (PDF) of subsurface models. The Markov chain Monte Carlo (MCMC) method is used to sample the posterior PDF and the subsurface model characteristics can be inferred by analyzing a set of the posterior PDF samples. In this paper, we first introduce the stochastic seismic inversion theory, discuss and analyze the four key parameters: seismic data signal-to-noise ratio (S/N), variogram, the posterior PDF sample number, and well density, and propose the optimum selection of these parameters. The analysis results show that seismic data S/N adjusts the compromise between the influence of the seismic data and geostatistics on the inversion results, the variogram controls the smoothness of the inversion results, the posterior PDF sample number determines the reliability of the statistical characteristics derived from the samples, and well density influences the inversion uncertainty. Finally, the comparison between the stochastic seismic inversion and the deterministic model based seismic inversion indicates that the stochastic seismic inversion can provide more reliable information of the subsurface character.
基金supported by the Fun⁃damental Research Funds for the Central Universities(No.3122022103).
文摘In order to reduce the accident rate of consumer-grade unmanned aerial vehicles(UAVs)in daily use scenarios,the accident causes are analyzed based on the accident cases of consumer-grade UAVs.By extracting accident causing factors based on the Grounded theory,the relationship between these factors is analyzed.The Bayesian network for consumer-grade UAV accidents is constructed.With the Grounded theory-Bayesian network,the probability of four types of accidents is inferred:fall,air collision,disappearance,and personal injury.With the posterior probability of each factor being reversely reasoned,the causal chain with the maximum probability of each accident is obtained.After the sensitivity of each factor is analyzed,the key nodes in the network accordingly are inferred.Then the causing factors of consumer-grade UAV accidents are analyzed.The results show that the probability of fall accident is the highest,the fall accident is associated with the probabilistic maximum causal chain of personal injury,and the sensitivity analysis results of each type of accident as the result node are inconsistent.
基金The National Natural Science Foundation of China(No.51875429)General Program of Shenzhen Natural Science Foundation(No.JCYJ20190809142805521)Wenzhou Major Program of Scientific and Technological Innovation(No.ZG2021021).
文摘To compensate for the limitations of previous studies,a complex network-based method is developed for determining importance measures,which combines the functional roles of the components of a mechatronic system and their topological positions.First,the dependencies among the components are well-represented and well-calculated.Second,a mechatronic system is modeled as a weighted and directional functional dependency network(FDN),in which the node weights are determined by the functional roles of components in the system and their topological positions in the complex network whereas the edge weights are represented by dependency strengths.Third,given that the PageRank algorithm cannot calculate the dependency strengths among components,an improved PageRank importance measure(IPIM)algorithm is proposed,which combines the node weights and edge weights of complex networks.IPIM also considers the importance of neighboring components.Finally,a case study is conducted to investigate the accuracy of the proposed method.Results show that the method can effectively determine the importance measures of components.
文摘It has been widely believed that trust is the basis for on-line trading by both academia and practice. The process of f initial trust formation is a dynamic and repeated process. In the electric business environment, this work chose to research the first phase of the process, which is initial trust. The Writer established dynamic model of initial trust formation biased on theory of planned behavior with other theories, such as TAM and social exchange theory, after micro-analyzing this formation mechanism from. in order to confirming effectiveness of the dynamic model, the writer adopted empirical study, from which writer got an order of. From the result of empirical study, we got the strength order of main factors that can influence the establishment of initial trust.