This paper proposes a design of internal model control systems for process with delay by using support vector regression(SVR).The proposed system fully uses the excellent nonlinear estimation performance of SVR with t...This paper proposes a design of internal model control systems for process with delay by using support vector regression(SVR).The proposed system fully uses the excellent nonlinear estimation performance of SVR with the structural risk minimization principle.Closed-system stability and steady error are analyzed for the existence of modeling errors.The simulations show that the proposed control systems have the better control performance than that by neural networks in the cases of the training samples with small size and noises.展开更多
Innovation is a process results in new products, methods of production and forms of business organization. Innovation can vastly improve the welfare of consumers, investors, firms and the economy. However, there is re...Innovation is a process results in new products, methods of production and forms of business organization. Innovation can vastly improve the welfare of consumers, investors, firms and the economy. However, there is relatively limited evidence of how corporate governance affects corporate innovation. In this study, the author theoretically demonstrates how internal governance mechanisms interact to affect innovation, such as internal control, monitoring and compensation contracts. Governance mechanisms are determined by firm characteristics. The "best" governance structures that can be adopted universally do not exist. However, innovative firms often share similar characteristics, and they adopt similar governance mechanisms to facilitate innovation. The ultimate purpose of such internal governance mechanism that facilitates innovation is to prevent managers' myopia, and this paper concludes 5 different roles in internal governance mechanism that facilitate corporate innovation behavior.展开更多
AIM: To investigate the role of endogenous pain modulatory mechanisms in the central sensitization implicated by the visceral hypersensitivity demonstrated in patients with irritable bowel syndrome (IBS). Dysfuncti...AIM: To investigate the role of endogenous pain modulatory mechanisms in the central sensitization implicated by the visceral hypersensitivity demonstrated in patients with irritable bowel syndrome (IBS). Dysfunction of modulatory mechanisms would be expected to also result in changes of somatic sensory function. METHODS: Endogenous pain modulatory mechanisms were assessed using heterotopic stimulation and somatic and visceral sensory testing in IBS. Pain intensities (visual analogue scale, VAS 0-100) during suprathreshold rectal distension with a barostat, cold pressor stimulation of the foot and during both stimuli simultaneously (heterotopic stimulation) were recorded in 40 female patients with IBS and 20 female healthy controls. RESULTS: Rectal hypersensitivity (defined by 95% Cl of controls) was seen in 21 (53%), somatic hypersensitivity in 22 (55%) and both rectal and somatic hypersensitivity in 14 of these IBS patients. Heterotopic stimulation decreased rectal pain intensity by 6 (-11 to -1) in controls, but increased rectal pain by 2 (-3 to +6) in all IBS patients (P 〈 0.05) and by 8 (-2 to +19) in IBS patients with somatic and visceral hypersensitivity (P 〈 0.02). CONCLUSION: A majority of IBS patients had abnormal endogenous pain modulation and somatic hypersensitivity as evidence of central sensitization.展开更多
This paper deals with utilization possibility of a kinematical couple of screw-matrix in minimachine mechatronic concept which is assigned to move within the pipes having less than 25 mm of the inner diameter. The pri...This paper deals with utilization possibility of a kinematical couple of screw-matrix in minimachine mechatronic concept which is assigned to move within the pipes having less than 25 mm of the inner diameter. The principle of the movement for a straightforward motion consists in transformation of the actuator rotary movement through a screw and a nut to the linear motion. It causes a change of distance between the front and rear parts of the minimachine modules. Due to minimization of the dimensions, the electrical control and power supply components are placed outside of the minimachine operating area. The control module is based on a programmable integrated circuit (PIC).展开更多
In traditional framework,mandatory access control(MAC) system and malicious software are run in kernel mode. Malicious software can stop MAC systems to be started and make it do invalid. This problem cannot be solved ...In traditional framework,mandatory access control(MAC) system and malicious software are run in kernel mode. Malicious software can stop MAC systems to be started and make it do invalid. This problem cannot be solved under the traditional framework if the operating system(OS) is comprised since malwares are running in ring 0 level. In this paper,we propose a novel way to use hypervisors to protect kernel integrity and the access control system in commodity operating systems. We separate the access control system into three parts: policy management(PM),security server(SS) and policy enforcement(PE). Policy management and the security server reside in the security domain to protect them against malware and the isolation feather of the hypervisor can protect them from attacks. We add an access vector cache(AVC) between SS and PE in the guest OS,in order to speed up communication between the guest OS and the security domain. The policy enforcement module is retained in the guest OS for performance. The security of AVC and PE can be ensured by using a memory protection mechanism. The goal of protecting the OS kernel is to ensure the security of the execution path. We implementthe system by a modified Xen hypervisor. The result shows that we can secure the security of the access control system in the guest OS with no overhead compared with modules in the latter. Our system offers a centralized security policy for virtual domains in virtual machine environments.Keywords: hypervisor; virtualization; memo-展开更多
Within the cell, several mechanisms exist to maintain homeostasis of the endoplasmic reticulum (ER). One of the primary mechanisms is the unfolded protein response (UPR). In this review, we primarily focus on the ...Within the cell, several mechanisms exist to maintain homeostasis of the endoplasmic reticulum (ER). One of the primary mechanisms is the unfolded protein response (UPR). In this review, we primarily focus on the latest signal webs and regulation mechanisms of the UPR. The relationships among ER stress, apoptosis, and cancer are also discussed. Under the normal state, binding immunoglobulin protein (BiP) interacts with the three sensors (protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme la (IREla)) Under ER stress, misfolded proteins interact with BiP, resulting in the release of BiP from the sensors. Subsequently, the three sensors dimerize and autophosphorylate to promote the signal cascades of ER stress. ER stress includes a series of positive and negative feedback signals, such as those regulating the stabilization of the sensors/BiP complex, activating and inactivating the sensors by autophosphorylation and dephosphorylation, activating specific transcription factors to enable selective transcription, and augmenting the ability to refold and export. Apart from the three basic pathways, vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR)-phospholipase C-~ (PLCy)-mammalian target of rapamycin complex 1 (mTORC1) pathway, induced only in solid tumors, can also activate ATF6 and PERK signal cascades, and IREla also can be activated by activated RAC-alpha serine/threonine-protein kinase (AKT). A moderate UPR functions as a pro-survival signal to return the cell to its state of homeostasis. However, persistent ER stress will induce cells to undergo apoptosis in response to increasing reactive oxygen species (ROS), Ca2+ in the cytoplasmic matrix, and other apoptosis signal cascades, such as c-Jun N-terminal kinase (JNK), signal transducer and activator of transcription 3 (STAT3), and P38, when cellular damage exceeds the capacity of this adaptive response.展开更多
文摘This paper proposes a design of internal model control systems for process with delay by using support vector regression(SVR).The proposed system fully uses the excellent nonlinear estimation performance of SVR with the structural risk minimization principle.Closed-system stability and steady error are analyzed for the existence of modeling errors.The simulations show that the proposed control systems have the better control performance than that by neural networks in the cases of the training samples with small size and noises.
文摘Innovation is a process results in new products, methods of production and forms of business organization. Innovation can vastly improve the welfare of consumers, investors, firms and the economy. However, there is relatively limited evidence of how corporate governance affects corporate innovation. In this study, the author theoretically demonstrates how internal governance mechanisms interact to affect innovation, such as internal control, monitoring and compensation contracts. Governance mechanisms are determined by firm characteristics. The "best" governance structures that can be adopted universally do not exist. However, innovative firms often share similar characteristics, and they adopt similar governance mechanisms to facilitate innovation. The ultimate purpose of such internal governance mechanism that facilitates innovation is to prevent managers' myopia, and this paper concludes 5 different roles in internal governance mechanism that facilitate corporate innovation behavior.
基金the Brain-Gut Research Group, Berne, Switzerland
文摘AIM: To investigate the role of endogenous pain modulatory mechanisms in the central sensitization implicated by the visceral hypersensitivity demonstrated in patients with irritable bowel syndrome (IBS). Dysfunction of modulatory mechanisms would be expected to also result in changes of somatic sensory function. METHODS: Endogenous pain modulatory mechanisms were assessed using heterotopic stimulation and somatic and visceral sensory testing in IBS. Pain intensities (visual analogue scale, VAS 0-100) during suprathreshold rectal distension with a barostat, cold pressor stimulation of the foot and during both stimuli simultaneously (heterotopic stimulation) were recorded in 40 female patients with IBS and 20 female healthy controls. RESULTS: Rectal hypersensitivity (defined by 95% Cl of controls) was seen in 21 (53%), somatic hypersensitivity in 22 (55%) and both rectal and somatic hypersensitivity in 14 of these IBS patients. Heterotopic stimulation decreased rectal pain intensity by 6 (-11 to -1) in controls, but increased rectal pain by 2 (-3 to +6) in all IBS patients (P 〈 0.05) and by 8 (-2 to +19) in IBS patients with somatic and visceral hypersensitivity (P 〈 0.02). CONCLUSION: A majority of IBS patients had abnormal endogenous pain modulation and somatic hypersensitivity as evidence of central sensitization.
文摘This paper deals with utilization possibility of a kinematical couple of screw-matrix in minimachine mechatronic concept which is assigned to move within the pipes having less than 25 mm of the inner diameter. The principle of the movement for a straightforward motion consists in transformation of the actuator rotary movement through a screw and a nut to the linear motion. It causes a change of distance between the front and rear parts of the minimachine modules. Due to minimization of the dimensions, the electrical control and power supply components are placed outside of the minimachine operating area. The control module is based on a programmable integrated circuit (PIC).
基金supported by the National 973 Basic Research Program of China under grant No.2014CB340600the National Natural Science Foundation of China under grant No.61370230 and No.61662022+1 种基金Program for New Century Excellent Talents in University Under grant NCET-13-0241Natural Science Foundation of Huhei Province under Grant No.2016CFB371
文摘In traditional framework,mandatory access control(MAC) system and malicious software are run in kernel mode. Malicious software can stop MAC systems to be started and make it do invalid. This problem cannot be solved under the traditional framework if the operating system(OS) is comprised since malwares are running in ring 0 level. In this paper,we propose a novel way to use hypervisors to protect kernel integrity and the access control system in commodity operating systems. We separate the access control system into three parts: policy management(PM),security server(SS) and policy enforcement(PE). Policy management and the security server reside in the security domain to protect them against malware and the isolation feather of the hypervisor can protect them from attacks. We add an access vector cache(AVC) between SS and PE in the guest OS,in order to speed up communication between the guest OS and the security domain. The policy enforcement module is retained in the guest OS for performance. The security of AVC and PE can be ensured by using a memory protection mechanism. The goal of protecting the OS kernel is to ensure the security of the execution path. We implementthe system by a modified Xen hypervisor. The result shows that we can secure the security of the access control system in the guest OS with no overhead compared with modules in the latter. Our system offers a centralized security policy for virtual domains in virtual machine environments.Keywords: hypervisor; virtualization; memo-
基金Project supported by the National Basic Research Program(973)of China(No.2012CB518900)the National Natural Science Foundation of China(Nos.31160240 and 31260621)+2 种基金the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period of China(No.2012ZX10002006)the Hangzhou Normal University Supporting Project(No.PE13002004042)the Natural Science Foundation of Jiangxi Province(No.20114BAB204016),China
文摘Within the cell, several mechanisms exist to maintain homeostasis of the endoplasmic reticulum (ER). One of the primary mechanisms is the unfolded protein response (UPR). In this review, we primarily focus on the latest signal webs and regulation mechanisms of the UPR. The relationships among ER stress, apoptosis, and cancer are also discussed. Under the normal state, binding immunoglobulin protein (BiP) interacts with the three sensors (protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme la (IREla)) Under ER stress, misfolded proteins interact with BiP, resulting in the release of BiP from the sensors. Subsequently, the three sensors dimerize and autophosphorylate to promote the signal cascades of ER stress. ER stress includes a series of positive and negative feedback signals, such as those regulating the stabilization of the sensors/BiP complex, activating and inactivating the sensors by autophosphorylation and dephosphorylation, activating specific transcription factors to enable selective transcription, and augmenting the ability to refold and export. Apart from the three basic pathways, vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR)-phospholipase C-~ (PLCy)-mammalian target of rapamycin complex 1 (mTORC1) pathway, induced only in solid tumors, can also activate ATF6 and PERK signal cascades, and IREla also can be activated by activated RAC-alpha serine/threonine-protein kinase (AKT). A moderate UPR functions as a pro-survival signal to return the cell to its state of homeostasis. However, persistent ER stress will induce cells to undergo apoptosis in response to increasing reactive oxygen species (ROS), Ca2+ in the cytoplasmic matrix, and other apoptosis signal cascades, such as c-Jun N-terminal kinase (JNK), signal transducer and activator of transcription 3 (STAT3), and P38, when cellular damage exceeds the capacity of this adaptive response.