期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
航空发动机难加工零件的机内测量技术与高品质数控加工 被引量:4
1
作者 万能 沈鹏 +2 位作者 常智勇 王展 冯咏 《航空制造技术》 CSCD 北大核心 2022年第13期26-34,共9页
加工精度与加工效率高且一致性好是高品质加工的两个重要特征。以机匣、涡轮盘、整体叶盘等为代表的航空发动机难加工零件因刚度弱、切削力大、精度要求高等原因,很难实现高品质加工。数控机床机内测量简称机内测量,通过自动测量装夹在... 加工精度与加工效率高且一致性好是高品质加工的两个重要特征。以机匣、涡轮盘、整体叶盘等为代表的航空发动机难加工零件因刚度弱、切削力大、精度要求高等原因,很难实现高品质加工。数控机床机内测量简称机内测量,通过自动测量装夹在机床上的工件,可以自动发现制造特征的定位偏差或加工误差进而补偿加工。因此,应用机内测量技术能够有效提高航空发动机难加工零件的加工品质。分析了航空发动机难加工零件的特点,讨论了机内测量技术在航发高品质加工中的应用场景、研究热点,并阐明了其应用原理。以航发涡轮盘榫槽边缘的倒圆加工为案例,通过机内测量榫槽边缘的各向偏差改良了传统工艺,实现了倒圆的补偿加工。最后指出了机内测量在航发难加工零件制造中的探索方向。 展开更多
关键词 机内测量 航空发动机 加工特征找正 补偿加工
下载PDF
一种新型机内刀具测量装置
2
作者 陈海燕 薛萍 孙忠林 《工具技术》 北大核心 2001年第4期30-32,共3页
研制了一种以线阵CCD作为光电瞄准器件、可实现刀具自动瞄准并实时显示测量结果的机内刀具测量装置。介绍了该装置的测量原理、光学系统、电路设计、精度分析和性能特点。
关键词 刀具 机内测量 线阵CCD 光学系统 自动瞄准 电路设计
下载PDF
面向塑机加工过程的工步间尺寸打表测量技术
3
作者 杜海清 冯刚 《塑料工业》 CAS CSCD 北大核心 2015年第3期90-93,97,共5页
针对塑机加工工步间许多尺寸的精度要求较高或无法使用常规量具进行直接测量等问题,提出同侧轮廓间尺寸、相对轮廓间尺寸和相背轮廓间尺寸机内打表的间接测量方法,并对测量所涉及的杠杆千分表反向间隙值进行了实验标定。通过对测量结果... 针对塑机加工工步间许多尺寸的精度要求较高或无法使用常规量具进行直接测量等问题,提出同侧轮廓间尺寸、相对轮廓间尺寸和相背轮廓间尺寸机内打表的间接测量方法,并对测量所涉及的杠杆千分表反向间隙值进行了实验标定。通过对测量结果的影响因素分析可知,较小的压表量δ有利于减小测量误差,且控制杠杆表测杆摆动平面与测量面法平面间夹角θ、测杆轴线与测量平面间初始夹角γ在尽可能小的范围内,都有利于提高测量精度。通过对数控加工过程进行工步间的测量和管理,可以有效地进行质量控制,从而最大程度地发挥机床的加工能力,达到最佳的加工精度。 展开更多
关键词 塑机加工 机内测量 工步间尺寸 测量误差
下载PDF
Predicting the fault-proneness of class hierarchy in object-oriented software using a layered kernel 被引量:1
4
作者 Peng HUANG Jie ZHU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第10期1390-1397,共8页
A novel kernel learning method for object-oriented (00) software fault prediction is proposed in this paper. With this method, each set of classes that has inheritance relation named class hierarchy, is treated as a... A novel kernel learning method for object-oriented (00) software fault prediction is proposed in this paper. With this method, each set of classes that has inheritance relation named class hierarchy, is treated as an elemental software model. A layered kernel is introduced to handle the tree data structure corresponding to the class hierarchy models. This method was vali- dated using both an artificial dataset and a case of industrial software from the optical communication field. Preliminary experi- ments showed that our approach is very effective in learning structured data and outperforms the traditional support vector learning methods in accurately and correctly predicting the fault-prone class hierarchy model in real-life OO software. 展开更多
关键词 Object-oriented software Fault-proneness Support vector machine Structured kernel
下载PDF
On Using Physico-Chemical Properties of Amino Acids in String Kernels for Protein Classification via Support Vector Machines
5
作者 LI Limin AOKI-KINOSHITA Kiyoko F +1 位作者 CHING Wai-Ki JIANG Hao 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第2期504-516,共13页
String kernels are popular tools for analyzing protein sequence data and they have been successfully applied to many computational biology problems. The traditional string kernels assume that different substrings are ... String kernels are popular tools for analyzing protein sequence data and they have been successfully applied to many computational biology problems. The traditional string kernels assume that different substrings are independent. However, substrings can be highly correlated due to their substructure relationship or common physico-chemical properties. This paper proposes two kinds of weighted spectrum kernels: The correlation spectrum kernel and the AA spectrum kernel. We evMuate their performances by predicting glycan-binding proteins of 12 glycans. The results show that the correlation spectrum kernel and the AA spectrum kernel perform significantly better than the spectrum kernel for nearly all the 12 glycans. By comparing the predictive power of AA spectrum kernels constructed by different physico-chemical properties, the authors can also identify the physico- chemical properties which contributes the most to the glycan-protein binding. The results indicate that physico-chemical properties of amino acids in proteins play an important role in the mechanism of glycamprotein binding. 展开更多
关键词 AAindex AA spectrum kernel correlation spectrum kernel physico-chemical properties string kernel weighted spectrum kernel.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部